10.1184/R1/6468407.v1 Ramamurthy Bhagavatula Ramamurthy Bhagavatula Matthew Fickus Matthew Fickus W. Kelly W. Kelly Chenlei Guo Chenlei Guo John A. Ozolek John A. Ozolek Carlos A. Castro Carlos A. Castro Jelena Kovacevic Jelena Kovacevic Automatic identification and delineation of germ layer components in H&E stained images of teratomas derived from human and nonhuman primate embryonic stem cells Carnegie Mellon University 2010 Stem cell biology classification feature extraction image analysis 2010-04-14 00:00:00 Journal contribution https://kilthub.cmu.edu/articles/journal_contribution/Automatic_identification_and_delineation_of_germ_layer_components_in_H_E_stained_images_of_teratomas_derived_from_human_and_nonhuman_primate_embryonic_stem_cells/6468407 <p>We present a methodology for the automatic identification and delineation of germ-layer components in H&E stained images of teratomas derived from human and nonhuman primate embryonic stem cells. A knowledge and understanding of the biology of these cells may lead to advances in tissue regeneration and repair, the treatment of genetic and developmental syndromes, and drug testing and discovery. As a teratoma is a chaotic organization of tissues derived from the three primary embryonic germ layers, H&E teratoma images often present multiple tissues, each of having complex and unpredictable positions, shapes, and appearance with respect to each individual tissue as well as with respect to other tissues. While visual identification of these tissues is time-consuming, it is surprisingly accurate, indicating that there exist enough visual cues to accomplish the task. We propose automatic identification and delineation of these tissues by mimicking these visual cues. We use pixel-based classification, resulting in an encouraging range of classification accuracies from 74.9% to 93.2% for 2- to 5-tissue classification experiments at different scales.</p>