
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



A SURVEY OF TOP CATEGORIES*

by

Oswald Wyler

Research Report 70-26

June, 1970

*This work was partly supported by NSF Grant GP-8773

University Libraries
Carnegie Mellon University
Pittsburgh PA 15213-3890

HUNT LIBRARY
CARNEGJE-MmON UNIVERSITY



STC ii

I n t r o d u c t i o n

For a long time, general topology has not only been a study of topological

spaces. Weil and Bourbaki introduced uniform spaces to study uniform continuity

more than thirty years ago. The concept of a neighborhood space or closure space

or "mehrstufige Topologie" is nearly fifty years old, due to Hausdorff and used
v

largely by the Cech school. The recognition that not all structures with limits

pf filters are topologies led to the limit spaces of Kowalsky [211 and Fischer

L9]« Feedback from other mathematical theories, and sometimes simply the urge

for variations on a theme, led to yet other categories such as Hammer's extended

topologies, uniform convergence spaces [5], and various quasi-uniform spaces.

Limits, continuous functions, open and closed sets, and other paraphernalia

of topology were soon defined for most or all of these categories, usually by

analogy to existing concepts. This search for analoga, and the companion pheno-

menon of carrying over proofs from one theory to another, made a general theory

more and more desirable. Efforts to establish a descriptive theory of structures

of topological nature were made, but they seemed overly complicated and not

general enough, and thus they were largely abandoned in favor of a categorical

approach.

Several categorical solutions for the problem of finding a theory of topo-

logical theories have been offered. Husek's S-spaces [l5], Kate'tov's M-spaces

[17], Bentley's T-spaces [3], and Kennison's pullback stripping functors [l8]

are examples. Thus our top categories join an already large company. Not sur-
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prisingly, one finds that any two of these approaches are either categorically

equivalent, or that one is a special case of the other. W. Shukla's thesis [29]

contains a detailed study of these connections. It turns out that S-categories

are equivalent, and pullback stripping functors almost equivalent, to top cate-

gories. M-spaces are less general, and T-spaces are a rather special case of

top categories.

Our main reason for preferring top categories over S-spaces or other equi-

valent theories is the fact that top categories have a simple invariant defini-

tion which puts general topology into a larger categorical framework: a top

category is "simply" a fibred category in the sense of Grothendieck [12] or Gray

[ll] with small complete fibres.

Top categories go back to [30]. A revised version [3l]» with some topics

omitted and others amplified, has been submitted for publication. Meanwhile,

some questions left open in l_3l] have been answered, new applications have been

found, and experience showed that some special cases of general results are use-

ful enough to deserve a more detailed treatment. Thus the author decided to

write this report as a detailed and reasonably complete introduction to top cate-

gories, on a pre-publication level. The present report contains almost all of

[3ll and of [30], results from [25], [26], [8], [33], some results of Shykla's

thesis, and some.new results.

Section 1 discusses fibred categories in general. We give a simpler defi-

nition than that of Grothendieck and Gray. The same material occurs in [8],

in somewhat more general and more condensed form, except that a converse of

[8; 7.8] has been added.

Section 2 provides basic definitions and some general results.
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The list of examples in section 3 could have been enlarged almost indefi-

nitely. Shukla [29] has some very interesting examples from automata theory and

information theory.

Sections 4 and 5, on the lifting of functors and of universal morphisms, are

mostly from [3l]. They contain results which are very useful in general topology.

Section 9, also from [3l], puts topological algebra into the framework of top

categories. Thus new useful applications of the basic results of sections 4 and

5 can be made.

Sections 6 and 7 contain material from [25], [26], [30] in amplified and

sometimes modified form. These two sections present specialized, and very use-

ful, versions of basic results from sections [4] and [5].

The point separators of section 8 do not deal with top categories directly,

but they certainly form a part of categorical topology, coning as they do from

the point separation axioms T. (i = 0, 1, 2) and related topological axioms.

The theory was originated in rather special form in [28], generalized to top

categories over ENS in [30], and put in definitive form in this report.

Section 10 stems from an interesting theorem of Kennison [18] which was put

into a general categorical framework by Herrlich [l4; § 13]•

Section 11, on images and relations, contains some basic definitions and

results of [8], and a condensed preview of parts of [33]. No proofs have been

given; this section has been inserted mainly for the convenience of the reader.

The continuous relations of section 12 are a new development of the general

theory. More than any other, this section must be considered as preliminary.

We do not anticipate a switch from the given definition of continuous relations

to one which is not substantially equivalent, but it seems definitely indicated
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to find a common framework for relations and continuous relations. Other ques-.

tions are posed in 12.7, and there are many more.

The study of the categories of general topology is one aspect of a new .

mathematical discipline for which the author has proposed the name categorical

topology. Top categories seem to be a good tool for this. Categorical topology

has many aspects which are not discussed at all in this report. We mention only

the study of reflective, coreflective, and otherwise interesting subcategories

of TOP using categorical methods (see e.g. [-14]), the study of completions and

compactifications (see e.g. [32]), and the study of autonomous top categories,

in the sense of Linton [23]. Binz and Keller [4], and Cook and Fischer [5],-have

shown that limit spaces form such a category.

Due to the pre-publication level of this report, no references have been

provided in the text, except occasionaly to an author by name. These elliptic

references can easily be amplified from the appended bibliography. Some results

and definitions appear only after they have been used, but eliminating such minor

defects of the report would have delayed its appearance unduly. We hope that the

present report will be useful to the reader despite these and other shortcomings.
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A SURVEY OP TOP CATEGORIES

Oswald Wyler

1. FIBfiATIOMS. Top categories are special fibred categories in the sense

of Grothendieck and Gray. We begin this survey therefore with a brief discussion

of fibred categories in general.

1.1. DEFINITION. Let P : fl\—» <£ be a functor. We call a morphism f̂ .:

b of A P-fibred if for every morphism v : C —> P a of (£ and every

morphism n. : c —» b of A sueh that P u. = (Pf.) v there is exactly one

morphism v. : c — p a of /A such that u, = f.. v.. and P v, = v . We call P

a fibration if for every morphism f : A — ^ B of <£. and every object b of J\

such that P b = B there is a P-fibred morphism f.. of l\ with codomain b

and P f1 = f , Dually, we say that fj <E A is P-opfibred if f^ is fibred

for the induced functor Pop :A°V—>C o p , and we say that P is an opfibra-

tion if Pop is a fibration.

1.2. EXAMPLE. The category <£• has morphisms of <£ as its objects, and

its morphisms are quadruples (f ,f.) : u — > v of morphisms of <L such that

v f = u f. in £ . The codomain functor D- :<L —><C is defined by putting

D. (f ,f.) = f- for (f ,f,) : u —^-v in € . A fibred morphism for this

functor is a pullback in &• . Dually, an opfibred morphisn for the domain func-

tor D : <f2 —'T><C is a pushout in <L. . D is a fibration if and only if <Z
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has pullbacks, and DQ is an opfibration if and only if <L has pushouts.

1.3. DEFINITION. Let P : A — * £ as above. For each object A of € ,

the morphisms f, &SS such that P f. = id A form a subcategDry of *A . Let

P* A denote this subcategory and H. : P* A — > A the inclusion functor. For

f : A — ^ B in <L , we call P-cleavage at f a pair (f*, <?>f) consisting of

a functor f* : P* B — > P* A and a natural transformation <pf : HA f* — > Hg

such that o>_ b is P-fibred and P (<D_ b) = f for every object b of P* B .

Dually, a P-opcleavage (f#, a>f) at f consists of a functor f* : P* A — >

P* B and a natural transformation <©_ : H. — > H f* such that yjf a is P-

opfibred and P (pf a) = f for every object a of P* A .

1.4. PROPOSITION. ?:/A~><L is a fibration if and only if there is a

P-cleavage (f*# tf*) at everv morphism f ,o£ (l .

Proof. The existence of a P-cleavage at every f<~(C obviously guarantees

the existence of enough P-fibred morphisms. Conversely, let P be a fibration

and f : A — ^ B in <£ . Assign to every b £ Ob i!N such that P b = B a P-

fibred morphism <pf b : f* b — ^ b- such that" P (<fe b) = f . If u : b — > b '

in P* B , then u (cf> b) = feu b') v and P v = id B for a unique morphism

v : f* b — > f* b' in /A . We put f* u = v . One verifies easily, using the

unicity of v , that this defines a functor f* : P* B — ^ P * A , and then the

morphisms O>. b define a natural transformation <pf '• H. f* — > H_ Q

1.5. PROPOSITION. Let a P-cleavage (f*, a>{) at every f£<C be given.

for P : A -9 € . If A (-- Ob C and A - ^ B --%> C i n ! , then

fid A <HA CA^ " id HA « 4 f g f (HA cff
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for unique natural equivalences cA s Id (P* A) — ^ (id A)* and c_ s f* g*
A f »g

— > (g f)* .

Proof. For a £ Ob P* A there is a unique c. a in P* A such that

(fid A a^ cA a) = id a '

We have (^ A a)(cA a)(^d A a) = fo?id A a)(id ((id A)* a)) in P* A , and

thus (cA
 a)(<pid A

 a) = id ((id A)* a) , and a. a is an isomorphism of P* A .

Using the unicity of cA a , we see that the morphisms c. a : a — > (id A)* a

define a natural equivalence c. : Id P A* —~> (id A)* .

For c COb P* C , there is a unique c_ c in P* A such that

(fgf c)(cf,g c) = (fge)(j%«»e)

in A • Using the unicity of cf c : f* g* c — ^ (g f)• c , we see that this

determines a natural transformation c_ : f* g* — ^ (g f)* .

We have to show that c« c is an isomorphism. There is a unique morphism

v : (g f)* c — > g * c in $\ with P v = f and (<p c) v = &>„ c , and there

is a unique morphism w : (g f)* c — ^ f * g* c such that P w = id A and

{f g* c) w = v . With c_ for c» c , it follows that

tygt 0) Cf,g W = % C^f ** °̂  W = % °̂  V = fgf ° '

and ((fg c)(f{ g* c) w c f > g = (^ c) c f > g = (fg c)(ff g* c) .

Thus cf w .* id (g f)* c and w e . = id f* g* c ,

and c. c is indeed an isomorphismQ

The natural equivalences c. and c« satisfy coherence conditions, but

we are not interested in these: we always have (g f)* = f* g* and (id A)*

= Id (P* A) for a top category.
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1.6. A fibration P : /A ~? <£ determines fibres P* A and embedding func-

tors H : P* A —>/A for objects A of <L- , cleavages (f*,OJf) for morphisms

f of (L , and coherence equivalences c, and c. . These data can be used

to describe or reconstruct $\ as follows. An object A- of <A is given by a

pair (A, a) with A = P A. , a £ Ob P* A , and A1 = H^a . A morphism f^ :

(A,a) — > (B,b) is represented by a pair (f ,u) , with f = P f 1 : A — > B

in (L , u : a — > f* b in P* A , and f1 = (a>f b)(HA u) in £\ . Composition

of (f,u) : (A,a) — > (B,b) and (g,v) : (B,b)—p (C,c) is given as follows.

t* e* c — > (g f )• c

f * b " g* c

a ' *b

Thus (g,v) (f,u) = (g f, w) with w = c, (f* v) u in P* A .

We note that (f,u) does not describe f. quite fully: b is not given. ,

1.7. THEOREM. If P : ̂  ~~><L is a fibration with cleavages (f*,«pf) ,

then the following are equivalent for f : A —~>B in (C~ .

1.7.1. (f*,^-) is an opcleavage for P at f .

1.7.2. f* : P* A — > P* B is left ad.ioint to f* , and y/f = (ff f#)(HAM

for a front adjunction •* : Id P* A •—> f* f# for f* .

Proof. If (f#, <i/_) is an opcleavage at f , consider the equation

(0f b) u = v (yf a)

for objects a of P* A and b of P* b . If u : a — ^ f* b in P* A is

given, this determines v : f# a — > b in P* B uniquely since (f*,yvf) is an
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opcleavage. Dually, v determines u uniquely. Thus we have bisections

^ b : (P* B)(f# a, b) — > . (P* A)(a, f* b) ,

one for each pair (a,b) of objects. One verifies easily that V , is natural

in a and in b . We obtain a front adjunction M for this adjoint situation

by putting 1Ja = u for b = f# a and v = id b . For this front adjunction,

V t a =

for a. £0b P* A , and thus <f>f = ((fy fJ(HA>i) .

Conversely, we have to show that <ff & above is P-opfibred if the adjoint

situation is given. Thus let u : a — > c with P u = v f . If v. : b — ^ c

is P-fibred and P v. = v , then u = v, f, for a unique f, : a — > b such

that P f 1 = f , and fx = (ff b) w for a unique w : a — > f * b in P* A .

Now w = (f* x)("na) for a unique x : f* a — > b in P* B . Since a>. is

natural, the remaining square in the diagram below commutes.

.w

f* b — ^ ~ > b

A
f* f# a S£:nt£L^ f# a

Thus u = vj (j(/f a) for vj = ̂  x with P vj = v . If also u = v![ (% a)

with P v£ = v , then v£ = v][ x' with x' : f# a -—^-b in P* B . This sets

up the diagram above with w = (f* x'K-^a) and f. = (<̂« b) w . Thus x' = x ,

and v" = v- follows []

2. TOP CATEGORIC. Much of what follows remains valid for general fibra-

tions, but we specialize to a simpler and important case.
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2.1. DEFINITION. A top category over a category d is a pair (A, P)

consisting of a category J\ and a functor P : A —> <C , with the following

two properties.

2.1.1. P is both a fibration and an opfibration.

2.1.2. Every fibre P* A , for A G. Ob/A, is a complete ordered set.

We call P the projection functor of the top category (A, P) , and by abuse

of language, we often identify the top category with &\ .

2.2. PROPOSITION. If (A, P) is a top category over € , then the dual

pair C^°P, P°P) is a top category over C O p .

Proof. Definition 2.1 is self-dual0

We shall use this self-duality of our theory freely in what follows.

2.3. DISCUSSION. We have noted in 1.6 that a fibration P : /A — > C

determines, and is in turn determined by, the fibres P* A for A 6r0b<£f the

cleavages (f*, (f^) for f si- d- , and the coherence paps c. and cf . For

ordered sets as fibres, all equivalences are identities. Thus (id A)* a id P» A

and (g f)* = f* g* , if g f is defined. In other words, the fibres and clea-

vages determine a contravariant functor P* :(T°P —;> ORD , from (P to the

category ORD of ordered sets. In this situation, u : a —>f* b in P* A

means that a -̂  f* b . Thus a morphism (f ̂u) : (A,a) —;•" (B,b) of $\ is a

morphism f : A —-y B of <TL with a <C f* b , and we can suppress u from the

notation. With this convention, composition in /f\ becomes simply composition

of "underlying" morphisms in <L . The cleavage y?_ b becomes a morphism f :

(At. f* b) — > (B,b) which we call coarse. Clearly every contravariant functor

P* : dop —T> ORD sets up a fibration P : A — > <C" in this way.
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A complete ordered set is one which is complete as a category, or in other

words a complete lattice. Categorical limits are infima, and categorical colimits

are suprema. By 1.7, a fibration P is an opfibration if and only if all func-

tors f* have left adjoints. Thus we are led to the following theorem.

2.3. THEOREM. A top category (A, P) over a category <T is determined

by a contravariant functor P* :<C — > ORD , from C to the category of

ordered sets, with the following properties.

2.3.1. Every fibre P* A , A £ 0 b £ , is a complete lattice.

2.3.2. Every map P* f = f* , for, f£?<C , preserves -i

2.4. If f : A —;>B and g : B •—;>A are functors of ordered sets, i.e.

order preserving maps, then g is left adjoint to f if and only if

g b 4-_a <==> b -^f a ,

i.e. if and only if f and g form a (covariant) Galois correspondence. This

is of course well known. If A is complete and f : A — > B is given, then g

with this property exists if and only if f preserves infima. This is equally

well known, and at the basis of 2.3.2.

2.5. NOTATIONS. Let P i A —><£. define a top category (̂ , P) over <L

We put pA for P* A and fP for f* if A 6 ObC and f£-'C . Thus fp :

p B —^ p A for f : A — > B in <C . We identify objects of /\ with pairs

(A,a) with A 6 Ob C and a £ p A , and morphisms f : (A,a)—> (B,b) of A

with morphisms f : A —T^B of (Z2 such that a ̂ .fp b . By 2.3.2 and 2.4,

f a < b <s=> a £ fP b ,

for all a g p A and b £ p B , defines f : p A — > p B if f s A — ^ B „
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We have noted that f : (A, fp b) — > (B, b) is P-fibred (or coarse): by 1.7

the morphism f : (A, a) —^(B, f a) is P-opfibred (or fine). The following

result expresses this situation.

2 . 6 . PROPOSITION, i f i t ( ^ , P) >*> fl *"P w«.tRgnry nvsr <L . J £ f :

A —=5 C and. g : C —> B jLn. <f_ , and if a £ p A and b £ p B , then the

following three statements are logically equivalent.

2.6.1. g-f : (A,a) — >(B,b) in A.

2.6.2. f : (A,a) — > (C, g5 b) in /A .

2.6.3. g : (C, f a) — > (B,b) in /A .

Proof. a ^ ( g f ) p b <^> a ^ f p gp b <=^> f a < g P b J

We note that P# A = p A and P* f = f defines a covariant functor P* :

d—p ORD . This follows easily from the dual of 1.5 and the fact, noted in 2.3,

that coherence maps are identity maps if fibres are ordered sets.

2.7. DEFINITION. Let {A, P) be a top category over (L . We denote by

£*. and UX , or by oC? and kjf if the situation requires it, the least and

the greatest element of pA , for A (£0b(£ . Elements of p A are usually

known as structures of A , and Of. and 6J^ then are called the discrete and

the indiscrete structure on A . We say that a structure a is finer than a

structure a' if a -.-a1 , or equivalently if id A : (A,a)—> (A,a') in>A .

2.8. THEOREM. If (A, P) is a top category over CT , then the functor

P is faithful and has a left ad.joint right inverse of , obtained by putting

OC A = (A,C<A) for A 6 Ob<C , and Oc f = f : X A —>cx B for f : A — ^ B

jja (C . IXtally. P has a right ad.ioint right inverse CJ , obtained similarly.
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Proof. Since in particular «tf . ̂  fp<x' for f : A — > B in €'- , CX „ is a
•——— AD P

functor. We have f : ex. A — > (B,b) in /A if and only if f : A — > B in <C

since (X. ̂ L f** b in any case. The bisection

& A, (B,b)) — ^ > (A, P (B,b))

thus obtained clearly is natural in A and in (B,b). This proves the first

part, and the second part is strictly dual to thisQ

3. EXAMPLES OP TOP CATEGORIES. We give examples from general topology,

from topological algebra, and purely set-theoretic examples, and one theorem.

3.1. TOPOLOGICAL SPACES. Let t E be the complete lattice of all topo-

logies on a set E , with " < T' if u is finer, i.e. has more open sets. For

f : E — ± P and a topology <3~ of F , let f^cr) be the topology of E with

all sets f~ (v) , V open for o~, as open sets. This satisfies 2.3.2, and

the resulting top category over ENS clearly is the category TOP of topolo-

gical spaces.

3.2. A convergence structure on a set E is a relation q from proper

filters on E to E which satisfies the two Frechet axioms in filter form.

LI. * q x for x £ E and the filter x on E with basis

L 2. If O q x and </> is finer than $> , then y/q * •

We put q 4q' » for convergence structures q and q1 on E , if always

<pq x =$ CD q' x . With this order- relation, convergence structures on E

form a complete lattice Q E . For a mapping f : E —->p and a filter <p

on E , define a filter f*(<P) on P by Y £ f*Cip) <==? f" W&CD , for

Y C F , Then <2> q* x <£=^ **(#>) 0. f(x) defines a convergence structure
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q* = f (q) on E for a convergence structure q on P . The maps f pre-

serve infima, and a top category CONV over ENS , the category of convergence

spaces. results.

There are many similar examples, such as uniform spaces, limit spaces, clo-

sure spaces, proximity spaces, uniform convergence spaces, and others.

3.3. TOPOLOGICAL GROUPS. Let € ~ GRP , the category of groups. For a

group G , let tg G be the set of all topologies of G which are compatible

with the group structure of G . Define ^ and f g as ^ and f in 3.1.

The resulting top category is the category of topological groups and continuous

group transformations.

This is a theme with many variations.

3.4. For any category <C , the identity functor Id £ is both a fibration

and an opfibration. The fibres are singletons and thus trivially complete lat-

tices. Thus every category -̂ is a top category over itself.

3.5. If we include the null filter or improper filter with basis

then filters on a set E form a complete lattice. The proper order relation for

this lattice turns out to be the one opposite to set inclusion. For a mapping

f : E •—>• F , we have defined a mapping f# from filters on E to filters on

F in 3.2. We obtain f* in the opposite direction by letting f*(o/) be the

filter on E generated by all sets f"1^) with Y£^u; . If f is not sur-

jective, f*ty) may well be the null filter on E for a proper filter <P ,

One sees easily that f*^P) •£ y^-4~# <$? ^f*(y>) , where JC means finer; see

above. Thus f* preserves infima, and a top category over ENS results, with

pairs (E,<P) , where (p is a filter on E » as objects.
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3.6. The graphs of equivalence relations on a set E , ordered by set

inclusion, form a complete lattice e E , with set intersections as infima.

If f : E — > F and v C F>; P is the graph of an equivalence relation, then

f (v) = (f X f ) ~ (v) defines the graph of an equivalence relation on E . This

preserves infima, and a top category on EMS , the category of equivalence rela-

tions, is obtained.

A category of reflective relations is defined in the same way.

3.7. Subsets of a set E form a complete lattice, with set inclusion as

order relation. If f : E --/ F , then f~ maps subsets of F into subsets

of E , preserving intersections. Thus a top category on ENS is obtained.

Objects are pairs (A,X) of sets with X C A , and maps f : (A,x) —;> (B,Y)

are mappings f : A — > B with X O f"1^) , i.e. with f(x) £Z Y . Thus this

category is the category of pairs of sets.

The same construction works if we replace sets and subsets by groups and

subgroups, or by topological spaces and subspaces. Thus pairs of groups and

pairs of topological spaces form top categories over GRP and TOP respectively.

3.8. THEOREM. If (/A, P) is a top category over € and K a small

category, then (/A , P^) is a top category over the functor category tfr' .

Proof. Let I = Ob K . If P : K —><T. is a functor, then we define an

F-family as a family (a.), _ T with a. <E P (P i) for each i f l , and with
1 ifc i i

a. -^(F<p)P(a.) for every y : i —?> j in K . F-families form a set p F .

If (\)-£i i s an F-family, then 0 i = (p i , a.) for i f - 1 , and

- P a : ([Ji —->^i>j for «•'• : i — > j in K , clearly defines a functor

K—y/A such that ^(/>= I>C/'= P . Every functor- '- : K—:>/A with P 0 = P
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is obtained in this way.

We order F-families a = (&±\c.i b v Pitting a <a' if a. ̂ a! for all

i(£l . For P-families a, = (a . ) . . _ , we claim that a. = /") a . for i f I
P p-i 111 1 y' /*i

defines an F-family a = / ) a . If ^ : i —-> j in K , then indeed

fla. < n(F?)
P(a^) = (Pf)

p(/V) ,

as required. Thus F-farailies form a complete lattice p P ,

For A : F — > G in 0- and a G-family b = (b.).,-,. , we claim that

a. = (Ai)P(b.) for i & I defines an F-family a = Ap(b) . Indeed,

(M)P(b.) < (Ai)P(Ga>)P(b.) - (F'f)P(\j)P(b.)

for cp t i —-? j in K . Thus AP(b) is an F-family. Now one sees easily

that X P - P G -—^ P P preserves infiina.

Let (ft and ^" be functors from K to A , witJbi 0 i • (P i, a^) -and

^ i = (G i, b ) for i C-I . If A : d'1 "~» -/- in AK and / A , - P.4 = ,\ :

P — > G in C K , then /\i = Ai : (p i, a) —} (G i, b;.) in A for i<c I .

This requires a± <~ (Ai)^^) for all iC-1 , or a <'AP(b) . Conversely, if

a <C\p(b) , then the morphisms given above exist, and one sees easily that they

define A : Cp •-? ;i- in A K with PKA = A. 0

4. LIPTIKG FUNCTORS AND KATURAL TBANSFOE2NATIONS. V.Te consider in this sec-

tion top categories (A , P) over <A and (•'•*>, Q) over .#>, and we use the

notations of 2.5 in the obvious way for both categories.

4.1. DEFINITION. We say that a functor ffj : ,4 P -^ iB q lifts a functor

P : <A ~5fR if Q(f)= P P . If (j: and ̂  lift F and G , then we say that

a natural transformation A : CjO H? u' -; lifts a natural transformation A :
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G if Q A s A P .

If 4> lifts P , then P = Q O.x = Q (£>u> , and thus 0 determines P .

The case P = Id A is important in general topology (where JS = ENS ) and else-

where; we shall consider this case separately.

4.2. PROPOSITION. Let P : A—*~fi be a functor. If maps <f>k : p A — >

q P A in, ORD are given, one for every ob.ject A of /A , and if

(4.2.1) ^ A f
py < (F f)q^y

in q P A whenever f : A —> B in /A and y ^ p B » then

(4.2.2) 0U,x) = (FA, 9>Ax) , <j)f = P f : <t>U,x) ~> 0 (B,y)

for ob.iects (A,x) and morphisms f : (A,x) —•/ (B,y) of A P , defines a func-

tor^* : A p —»JB q which lifts P . Every functor 0 :A P ~>B q which lifts

P is obtained in this way.

We call the maps <pA the structure maps of the functor <p .

Proof. If the maps <pk in ORD are given and satisfy (4.2.l), then also

(4.2.3) x 4 f p y = ^ f>A x<l(P f ) q ^g y ,

for f : A —> B in J\ , x £ p A , y 6 p B , and thus (4.2.2) defines a func-

tor <t> :AP—>K q which l if ts P . Conversely, a functor <f> which l i f ts P

obviously is of the form (4.2.2), with ^ x f q P A for x £ p A , and with

(4.2.3) satisfied. For f = id A , (4.2.3) shows that. <p. preserves order, so

that q>k 1 p A —> q P A in ORD , and (4.2.l) is (4.2.3) for x = fP y 0

4.3. PROPOSITION. IdAP l ifts Id /k , with structure morphisms id p A .

If 0:AV~-?5* and S^:Bq-^<C" r lift P : /A - B and G : B—XZ1 ,

HUNT LIBRARY
I W I E - M E L O N UNIVERSITY
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with structure morphisms cp. and <i/R respectively, then *f*(p lifts G P ,

with structure morphisms U4,. <p. (J

4.4. PROPOSITION. If functors 0 fifld. ty ££SBL A P ±fl B^ lift- fimn.+.nra

F and G from J^. Jjo. !£> t ŵ tfc structure maps <25. and U3 f then every

natural transformation A : Cp ~~> ty lifts a natural transformation \ : P —? G ,

and in this situation A and \ determine each other.

Proof. If A lifts A , then /\ = Q A CJ^ , and A determines A . Con-

versely, let A(A,x) = f : (PA,^A x) ~? (G A , ^ A X) for an object (A,x) of

A P and let A (u> A) = A. %&<^k —~> ŷ CvA . Since id A : (A,x) —> tc A
P A

i n / \ p , we have AA (id F A) = (id G A) f : d){k,x) —^^LOA in & q , and

thus f = A. . Since AA = Q/\(UJ A) , the morphisms A define a natural trans-

formation A = Q A u) : P —j> G . A clearly determines A , and Q A = A P [)

4.5. COROLLARY. A i n 4*4 i s a natural equivalence i f and only i f J\ i s a

natural equivalence and Cf>^ - ( A A ^ y ^ for every A &Jk

Proof. This follows immediately from 4.4 and from 7.2 belowQ

4.6. EXAMPLE. One does not expect every functor ($> : A P — ? & . q to be

lifted from a functor F : $K—>l£> . The following simple example sustains this

expectation. Let /\p be the category of pairs of sets (3.7) and^,q = ENS ,

both considered as top categories over ENS . Put T (A,X) = X for a pair of

sets, and let T f : X — ^ Y be the restriction of f for f : (A,x) —?> (B,Y)

Since P (A,X) = A and Q X = X in this situation, there can be no functor F :

ENS — > ENS such that Q T = P P .

The following theorem of Shukla generalizes our Theorem 3.8.
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4.7. THEOREM. LetA P an£.£q be top categories. If. A is small, then

the functors 0 iAP—^>B? which lift functors F : J\—>IB , and the natural

transformations of these functors, form a top category over iB .

Proof. If (f) lifts F , then we write 0 = (F,^) , where Cp is the

family of all structure maps fA : p A —3> q F A of 0 . If J\ is amall, then

these families form a set t A . We order t A by putting cp £f> if <fA
x

£.fl* in q F A for every object (A,x) of <AP . For a family of families

^ i n t P , we put ( C\v^)A x = f] (pT*) for every object (A,x) of A •

This defines |j(T>^ in t P ; see the proof of 3.8 for this and other details.

-A t

If A : P — ? G in B and y- 61 G , put (X (^))A x = (/\A)P(^ X) for

every object (A,x) of A P . This defines A : t G — > t F . One sees easily

that A preserves infima, and that a natural transf omation A J P — > G can

be lifted to a natural transformation A : (Ff<p) —> (G,1 '̂) (which la unique

by 4.4) if and only if ^ ^ A * ^ 0

5. LIFTING UNnraBSAL-JJORPHISMS. We consider in this section the lifting of

categorical limits and colimits, and of adjoint functor situations, from cate-

gories fi\ and S to top categories ftp and

5.1. DEFINITION. We say that & :<?\p~~? B * ±s taut over F : A ~*&

or that <P lifts F tautlv. if 0 lifts F , all structure maps 0>A : p A

q F A of 0 preserve infima, and <pA f
p = (F f)q<^B for every morphism f :

A —;>B of $K . We say dually that (p is cotaut over F if 0 lifts F ,

all structure maps £? preserve suprema, and always £TR f = (Pf) a>. .

Everything in this section follows froa our next result.
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5.2. THEOREM. Let a functor 0: A p - * B q lift a functor P :

with structure maps <p. . JE£ 0 is taut over P , then h * (B>y) — ?

is a universal morphism for (J) if and only if h : B — > F C j.s a universal

morphism for P and z = P\ \x 6= p C : y -̂  hq <pc x £ .

Proof. If h : (B,y) —> 0 (c,z) is universal for 0 , let g : B — > F A

in ̂  . If 0 is taut, then 0(A,U)A) = (p A, 6^) , and thus g : (B,y) —J>

0(k,LO ) in B q , and g = (p f) h for a unique f : (C,z) —-? (A,u>.)
ft A

) in B , and g = (p f) h for a unique f : (C,z) ? (A,u>.)
•ft. A

in ^ P . As f : (C,z) —5 (A,u>A) in A P if and only if f : C —>A in A ,

i t follows that h : B —> F C is universal for P .

Conversely, let h : B —?F C be universal for F . By the definitions,

h : (B,y)—? (p(c,z) is universal for 0 if and only if y ̂  gq (f>k x <€=±?

z< fp x for f : C —> A in A , x <£ p A , and g = (p f) h in B . For

f = id C , i t follows that we must have z = ^ " ) | x £ p C : y ^ h t̂A^ x£ .

For this z , we have h q ^ c z = (\ |hqcpc x : y ^ hq Ẑ>c x^ since hq and

(by request) <P^ preserve infima . I t follows that y <T'hq^c x <$=> z -<fx

for x £ p C . If f : C —-> A in<A and g = (P f) h , then

g > A = h ' ( F f ) V A = h q
f c f p

for Q> taut over P , and then

y£. eqfA x <^? y ̂ h q ^ c f
p x <#=̂ > z ̂ f p x ,

for x<~ p A , as required0

5.3. THEOREM. A diagram D : K — * ^ p has a linit in J/f if and only if

the diagram P D : K — » ^ has a limit in /} . If A : AK —5> P D is a limit

of P D , then A = P^A = P A for a unique limit /\ : (A,x)K—> D of D ,
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and all limits of D are obtained in this way.

Dually, all colimits in A p are obtained by lifting colimits in A .

Proof. We recall that AK : K — > A is obtained by putting AKtf> = id A

for every (Pg K , and that f i = f , for all i G Ob K , defines a natural

transformation f^ : AK — > BK for f : A —5> B in A . Putting ft = f* for

f6/\ defines a constant diagram functor f: /fa—?A , and a limit of P D

is a couniversal morphism A : Fk —?> P D for this functor. One sees easily

that the constant diagram functor F :A P —9 C A P ) K , with ( A P ) K regarded as

top category over A by 3.8, lifts the functor F: A ~~?A , with structure

maps Yt, given by <$•< x ~ (x.) , the constant family with x. = x for every

i € Ob i , for x <=p A . This is obviously taut and cotaut, and thus we obtain

5.3 by applying the dual of 5.2 to this situation.

5.4. THEOREM. If 0 : A P ~ * B q is a functor of top categories which

lifts a functor F : A —> 1B> , with structure mans <p, : p A — > q F A , then

the following three statements are logically equivalent.

5.4.1. F has a left ad.ioint functor and (jb is taut over F .

5.4.2. r has a left ad.ioint, and (fiUL - L*J F .

5.4.3. *r has a left ad.ioint which lifts a functor G : 3 ~>/A .

Proof. We prove 5.4.3 = ^ 5.4.2 =;? 5.4.1 = > 5.4.3.

If ^ — i d ) and P4>= G Q , then G = P tf-'̂  — I Q <±>ui = F . Thus
q p

P 4^ —/ 0 t^p »
 end G Q — ' u^ F » so that 0 Lov and UJ F are naturally

equivalent. If uA : (F A, fk COA) —=? (F A, £upA) is an equivalence, then uA

is isomorphic in JB , and pA u^ = u^U; = UJ_,A , with 7.2 below. But then

= (F A, pAu;A) = (P A,o;pA) = u>PA , and 5.4.3 = > 5.4.2.
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If 4^—' 0 » ihen p V « [F , as above, and <0 preserves limits.

For an object A of J\ and a family (x.). ̂ T of elements of p A , the object

(A, 0 x.) of tA is a limit of a diagram with one vertex (A, 6A ) , and with

arrows id A : (A,x.) — ? (A,u>A) . If (j£> satisfies 5.4.2, then 0 preserves

this situation, and thus cp.(f\x.) = M(<pA x.) . Similarly, a diagram

( A f X ) _ i d j _ > ( j

(B,

f f

* idB w j i \

, with f : A > B in <A , is a pullback if and only if x = f P y .

This is easily verified. If (p satisfies 5.4.2, then (p preserves this pull-

back situation, and a>k f
P y = (F f)q <p^ y follows. Thus 5.4.2 =^> 5.4.1.

Finally, 5.4.1 =^> 5.4.3 follows immediately from the following resultQ

5.5. PROPOSITION. If G :B-?A is left ad.joint to F : A ~* B , with

front ad.junction m ; Idfe'^->F G , and if 0 ;A P — ^ B q lifts F tautly.

then there is a unique left ad.ioint functor ̂  : ^ ~^><^ p of (/) which lifts

G and for which ̂  can be lifted to a front ad.junctiqn H : Id B^ ~> (fi ty^'.

Proof. Let (B,y) be an object of ̂ § . By 5.2, there is a unique uni-

versal morphism Vj^ : (B,y)—><jD(G B, Z) for (p which lifts the universal

morphism ft . : B — > F G B for F . Taken together, the universal morphisms

for Q) determine a left adjoint functor Y^ of -(£) and a front adjunction // :

I d B q — J C P J in the usual way. One verifies easily that S^ lifts G and

that H lifts V\ 0

5.6. REMARKS. If 0 in 5.4 and 5.5 has a left adjoint functor ^ which
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lifts a functor G : ]B'-* J\ , then G is left adjoint to P by the proof of

5.4. In this situation, a front adjunction H : IdB^ -v0i/^ lifts a natural

transformation -M : Id B -j> P G . One verifies easily that ^ is a front

adjunction for F . Thus 5.5 has a converse which we have not stated.

5.4, and in particular 5.4.2, raises the following question: is it possible

that Cp lifts P and has a left adjoint ^P , but not a left adjoint which

lifts a functor G : B> ~? /^ ? Shukla has shown that this is indeed possible;

his example follows.

5.7. EXAMPLE. If Q is the forgetful functor from TOP to ENS , then

(TOP, Q) is a top category over ENS . Let TOP5 be the category of pairs of

topological spaces and define P : TOP5 —*? TOP by P (A,X) = A and P f = f ,

Then (TOP15 , P.) is a top category over TOP ; see 3.7. If 0 = P and F = Q

in this situation, then 0 obviously lifts P , and 0 has a left adjoint

functor a : TOP —> TOP1* . The following diagram illustrates the situation.

<*>" •* >T0P

1' ... I'
TOP • > ENS

If (E,~r ) is a topological space, then LJ F (E,T") = (E,tcu) , the set E

with the indiscrete topology, and Cp>D (E,X:) = (E,'ir) . Thus 5.4.2 is false,

and (p> cannot have a left adjoint functor which lifts the left adjoint functor

oc : EMS — > TOP of F (or any other functor G : ENS —>TOP ).

6. TOP SUBCATEGORIES AND FUNCTOBS. We apply our results to a special situ-

ation which occurs often enough to merit consideration.
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6.1. DEFINITION. Let A P and A q be top categories over a category A .

A functor T : A p — ? A q is called a top functor over A if T is taut over

Id A. We call A p a top subcategory of A q if A9 is a subcategory of A q ,

and the embedding functor is a top functor over >A . Dually, a functor S :Aq

— ? A P is called cotop over ̂  if S lifts Id.A cotautly, and a cotop sub-

category is one with a cotop embedding functor.

6.2. PROPOSITION. A top functor T :AP"-?<Aq has a unique cotop left

ad.ioint functor S :/iq —»<A p , and then S T S = S and T S T = T .

Proof. By 5.5, T has a left adjoint S which lifts Id A , and S is

cotop by the dual of 5.4. If T (A,x) = (A, C\ X) and S (A,y) = (A, cr y) ,

then id A : (A,y) —? (A, tr x) <£=£> id A : (A,CT- y) — ^ (A,x)
A A

since S — I T . In other words, y <£x^ * <3==$ cy-^ y ̂  x . Thus T deter-

mines the structure maps o~. , and hence S , uniquely. Moreover, cr.r cr

- <f~. and T~. cs- ~, ="C , as for every Galois correspondence, and S T S = S
A A A A £i.

and T S T = T follow 0

6.3. THEOREM. _If_ ]B> is a subcateftory of a top category A^ , then the

following statements are logically equivalent.

6.3.1. JB is a full reflective subcategory of A? > and every ob.ject (A,x)

o f A P has a reflection id A : (A,x) — > (A,x) for R .

6.3.2. B> is a full subcategory of A P and satisfies the following two

conditions, (i) 1£_ A&QhA and (x.).^-j is a family of elements of pA

such that (A.x.) <£ QbB for all 161... then (A.H %:) is in O b B .
— — - j. ^ — — — — — — — — • r i ( i — — — —

(ii) If f : A — > B in /\ and (B,y) £• ObiB, then (A, fpy)
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6.3.3. IB is a top subcategory of

6.3.4. 1B> is a full, reflective, replete subcategory of P? , and every

object (A,u>A) J 2 £ / \ P , tSL A £ Ob<A , is an ob.iect of &.

Proof. Assume first 6.3.1. In 6.3.2.(i), let id A : (A,fl3^) —"» U,x)

be the reflection. Then id A : (A,x) —-?> (A,x.) for all i<= I , and thus

f l z
i ^ x ^ x i for all i £ 1 . But then x = (°| x± , and (A, f] x±) <= ObB».

In 6.3.2.(ii), let id A : (A, fp y) — ^ (A,X) be the reflection. Then f :

(A,x) —-> (B,y) . Thus fp y 4. x ̂ f P y , and (A, fp y) <£ O b B .

Assume now 6.3.2. Let p' A = |x <£ p A : (A,x) £ Ob®^ for A £ 0 b ^ ,

and let ^ : p1 A — ^ p A be the inclusion map. By (i), p' A is a complete

lattice and L, preserves infima. By (ii), f : p B — > p A induces a map

fp' : p« B —"> p1 A for f : A — > B in A , with £, fp' = fp L.. . The maps

fp clearly preserve infima. Thus our data define a top category ̂ \P over

and a top functor I :A P—^^K p with structure maps C^ . A p clearly is the

full subcategory JL> , and I the embedding functor.

Assume now 6.3.3. 1B> is full by Lemna 6.4 below and reflective by 6.2. Put

B=A? and let I : A P — ? / ^ p be the embedding functor, with structure maps

C. for A £? Ob $\. If z is the greatest element of p' A , then I (A,z)

= (A,£»J ) since L. preserves the infimum of the empty family. If u : (A,x)

— > I (B,y) is an isomorphism of ,^p , then x = uP L^ y = U up y (see 7.2

below). Thus (A,X) = I (A, up y) , and 6.3.4 is valid.

Assume now 6.3.4. Let u : (A,x) — > (c,z) be a reflection for ^5*. Since

(A,U3A)<& Ob & , we have h u = id A for a nap h : (C,z) —^(A,O-> A) in S .

Now u : (A,W
A) — > (C,*^c) is in ̂  , and (id C) u = u h u : (A,x) — > ,

(C,t^c) . Since u : (A,x) —^(C,z) is a reflection, u h = id C follows.
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Now h : (C,z) — > (A, U Z ) is an isomorphism of A (see again 7.2). Since

^ is replete, id A = h u : (A,x) —? (A, U P Z) is a reflection for JB Q

6.4. LEMMA. A top functor T : A P ~ * i 3 q is full. ,

Proof. Let S be the cotop Wft adjoint of T . If f : T (A,x)

T (A,y) in <Aq , then f : S T (A,x) — > S T (A,y) in A P by applying S .

Applying T to this, we get f : T (A,x) — ^ T (B,y) back, by 6.20

6.5. COROLLARY. Every small or large intersection of top subcategories of

a top category A is a top subcategory of

Proof. If all subcategories B>^ satisfy 6.3.2, then their intersection

also satisfies 6.3.2, even if the family is largeQ

6.6. PROPOSITION. Let £k* be a top category over a category ^ with pro-

ducts. j[f_ IK is a class of ob.iects of A which is closed under products, then

the ob.iects (A, fP y) of A P , for f : A — ? B in A and (B,y)£#T, are

the objects of a top subcategory of A .

Proof. 6.3.2.(ii) is obvious in this situation; we verify 6.3.2.(i). Let

x. = f.p y. for f. : A-—^ B^ and (B^yi) £ IK. Let (B,y) in IK be a pro-

duct of the (B.,y.) with projections ;r : (B,y)—> (B^y.) . By 5.3 and its

proof, B = T T B. in u\ with projections TV. , and y = j |X.P y. . Thus

there is f : A — 9 3 in A with 71̂  f = f± t for all i € I , and then

fPy = fP (f) (JC.P y.)) =

This proves 6.3.2.(i) for our classQ
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6.7. THEOREM. Let T : A P ~?B q be a top functor over A and, S :,

AP the cotop left ad.ioint of T . Then T maps JKP onto a top subcate-

gory T(AP) of A q , and S maps /\q onto a cotop subcategory of <AP .

If I : T(AP) -=?Aq is the top embedding functor and J :tf$-~z> T(AP) the

cotop reflector, then J I = Id T(AP) and I J = T S .

Proof. T(AP) is a full subcategory of A q by 6.4. The front adjunction

id A : (A,x) — > T S (A,x) for an object (A,x) of/\q clearly is a reflection

for Tfc&p) . Thus 6.3.1 applies, and T(AP) is a top subcategory of A q .

Dually, SOA^) is a cotop subcategory of /\ p .

Every object (A,x) of A q has a unique reflection id A : (A,x) —$>

I J (A,x) for I . This is id A : (A,x) — » T S (A,x) , and thus I J = T S

for objects. As both functors lift Id A , we have I J = T S for morphisms too.

Since I J I = I by 6.2 and I is injective, we have J I = Id T(AP) j]

6.7. EXAMPLES. In general topology, a structure of one kind on a set E

often induces a structure of another less rich kind. For example, every topology

induces an underlying convergence structure, every uniform structure induces an

underlying topology, and every proximity induces an underlying closure structure.

In such a situation, we have top categories ENS" and EUSq , and a map "Ur, :

p E — > q E for every set. Typically, the maps Z~E preserve infima and satisfy

"ir fp = f" v for every mapping f : E •—j? P . Thus they are the structure maps

of a top functor T : ENSP -> ENSq . The top subcatectory T(ENSP) of ENSq ,

and the cotop subcategory S(ENSq) of "fine" spaces in EWSP , for the cotop

left adjoint S of T , are of interest in many cases.

Top subcategories occur quite often, not only in general topology but also
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elsewhere. For instance, the top category EMS of equivalence relations (3.6)

is a top subcategory of the category of pre-ordered sets, and pre-ordered sets

form a top subcategory of the category of reflective relations.

In general topology, coreflective subcategories are cotop if replete (i.e.

closed under isomorphisms). We shall consider this later. Reflective full sub-

categories are usually not top, but they have simple top hulls by 6.6.

7. EPIREFLECTIVE SUBCATEGORIES. The present state of this aspect of the

theory of top categories is not very satisfactory. Basic results were obtained

by Kennison, generalized by the author and further refined by Shukla. Herrlich

obtained a much more general theory, but further generalizations seem possible.

In this survey, we present only the fflore- easily accessible basic results. Before

we can discuss these, we need some lemmas concerning monos and epis, extremal

monos and epis, and isomorphisms. We have already used some of these repeatedly.

We recall that a mono m in a category $\ is called extremal if m = g f

in A and f epi always implies that f is isomorphic in A . Extremal epis

are defined dually.

7.1. PROPOSITION. A mornhism u : (A,x) — > (B,y) of a top category AP

is a monomorphism of A P jLf and on3,y if u is a, monomorphism of ̂  , and u :

(A,x)—? (B,y) is an extremal monomorphism of A P if and only j.f u is an

extremal monomorphism of /*> and x = u p y .

7.2. PROPOSITION. A mornfaiSjp u : (A,x) — > (B,y) oft a top category AP

is isomorphic in ft\p if and only if u is isomorphic in .A and x = u P y .

Proof. The faithful functor P : / i p — > A reflects monomorphisms, and thus
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u : (A,x) — > (B,y) is mono if u : A <—? B is. On the other hand, if u f

= u g in A for f , g from C to A , then u f = u g in AV for f , g

from (C,ot'c) to (A,x) . Thus u is mono in A if u is mono in/\P .

If u : (A,x) —^(B,y) is iso in A P with inverse v : (B,y) ^(A,X) ,

then x ̂ u p y and y ^ v p x , and v = u"1 in /\ . But then v5 = (u5)"1

in ORD , and up y ̂ .u vp x = x . Thus x = u y . Conversely, if v = u

in A. and x = up y , then y = vP x , and thus u : (A,x) —>(B,y) is iso

in/^p with inverse v : (B,y)—^> (A,x) .

Consider now u : (A,x) => (Bfy) in A P . If x<^uP y , then

(A,x) -iiA_> (A,u
p y) -JL>(Bfy)

is a factorization of u in A P with the first factor epi, Utt not iso. For

u •= g f in <A with f not iso, we have a factorization

in /\ with the first factor not iso (by 7.2 which we have proved). Thus assume

that u is an extremal mono in A and x = u y . Consider a factorization

(A,x) ~X-£(CfZ)__I_^(Bfy)

with an epi first factor. By the dual of the first Dart of 7.1, f is epi in

and hence iso. Let h = f"" . Then g = u h , and gP y = hP x follows. From

the first factor, we have x £T fp z and thus z :-. hp x = g y . From the second

factor, z ̂  gp y . Thus z = g5 y , and f* z = up y = x . This shows that

the first factor is isoinorphic in A P 0

7.3. DEFINITION. A full subcategory B of a category -A is called epi-

reflective if every A & Ob^ admits a reflection O.. : A —>- R A for JS with
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p^ epimorphic in A . We call IB productive if every family (\)-£T of

objects of £ has a product B in «A such that B cr Obi?? , and we call JS

hereditary if for every extremal monomorphism m : A —:» B in A with B £~0b25

there is an isomorphism u : A —=» C in A with C £= 0bJ5 . We call JK fac-

tored over ]B> if every morphism f : A —f~B> in A with B<£r Ob^ has a fac-

torization f = m e with e epimorphic and m an extremal monomorphism of <A •

We say that /\ is colocally small over J3 if for every object A of /A there

is a (small) family of epimorphisme e. : A —5> B. with codomains B. <£ Ob £>

such that every epimorphism e : A — ? B with B G: Oblf? is of the form e = u e.

with u : B —5> B isomorphic, for at least one e. : A — > B .

7.4. THEOREMS. Let JB be a full subcatefory of a category fi\ . If ^ is

epireflective. then SB is hereditary. Conversely, if iS is hereditary and pro-

ductive, and if A. is factored over R and colocally small over JB , then ,S*

is epireflective.

Proof. The proof follows a standard pattern due to Bourbaki; we omit scce

details. If J?> is epireflective, and if m : A —;> B is an extremal mono with

B ^ O b ^ and r>A : A —pR A a reflection for & , then m = f f>A in /P\ for

a morphism f : R A —f B . Since j>^ is epicorphic, P, is isomorphic. Thus

IB is hereditary.

For the converse, let A<S O b ^ , with <& "representative family" of epis

ei : A —->B. with B± & Ob B, Form the product B in <&\ of the B. , with

projections TT. : 3 -—? B. and. with B6~ Ob/B . Each e. has a factorization

A ±
R A > B - S

in J\ with C?A epi , m extremal mono, R A <=: Ob^?, and with P, and m
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independent of i . If f : A — * B . in <A with B, £Qb& , then we can fac-

tor f into A —^-9 C — ~ ? B with m extremal mono, e epi, and C 6-0b$§.

Then e and hence f factors through one of the e. , and hence f = g o . for

some g : R A —'•?> B. in IB . Since p. is epi, g is uniqueQ

7.5. REMARKS. Theorem 7.4 is a variation of a theorem of Herrlich which

had been obtained for TOP by Kennison and for top categories by the author.

Herrlich's version is much more complete than either of its predecessors or our

present result. If /\ has products and is colocally small and factored (over .A

and hence over any full subcategory), then every top category over <A has these

properties, by 5.3, 7.1, and the definitions. In this situation, every reflec-

tive full subcategory of /\ is productive, and 7.4 becomes: A full subcategory

lB> of if\ is epireflective if and only if Jo is hereditary and productive.

Kennison, Ehrbar, Shukla, and possibly others, have generalized 7.4 by con-

sidering different factorizations in A , through images or coimages of some

kind. In all of these generalizations, it seems important that either e is

always epi or m always mono in an "admissible factorization" f = a e in A .

Further research in this direction seems indicated.

7.6. EXAMPLES. Every top category over ENS is factored in the sense of

7.3 and colocally small. Thus 7.4 applies. Examples of epireflective subcate-

gories of TOP are T spaces for i = 0 , l , 2 , 3 , 3 T » and regular and _

completely regular sraces. Normal sraces fail the test: the product of normal

spaces is not necessarily normal. There are of course many reflective subcate-

gories of top categories which are not epireflective: the usual separated com-

pletions and compactifications furnish examples.
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8. POINT SEPARATORS. We discuss in this section a categorical theory of

point separation axioms. The theory is not restricted to top categories; it is

valid for any concrete category, and we present it in this general context.

8.1. DEFINITIONS. We recall that a concrete category ^\ is one with a

faithful "underlying set" functor U : A —» ENS . If /\ is concrete, then

every top category over A is concrete. We denote by ENS the top category

of reflective relations and by R : ENS r—^ ENS its projection functor. We say

that a full subcategory IB of a concrete category A is infective if for every

morphism m : A — > B of A with U m injective and B&Qb]B>f we have m

in £5 and thus A 6r0b IB. An injective subcategory is always replete.

We recall that the faithful functor U : ^ •—5>EN5 always reflects mono-

morphisns. Thus m is monomorphic in A if U u is injective. If U has a

left adjoint, then U preserves monomorphisms, and products. It follows that an

injective subcategory of A is always hereditary.

8.2. DEFINITION. Let A be a concrete category. A functor S : A ~> ENSr

such that R S = U is called a point sê parator on A . If S : A —> ENSr is a

point separator, then we write S A = (U A, s.) for kG Ob <A . We say that A

is separated for S if sA = IyA , the identity relation on U A , and we

denote by sep S the full subcategory of A with separated objects of /^ as

its objects. We note that S f = U f : (U A, s ) — > (U B, sR) for a morphi
'B' sm

f : A •—̂ » B of /t and a point separator S (inA , Thus S is determined by

the relations s, , and these must satisfy s. ̂ (u f) r s^ for <f : A — & B

in A .

8.3. PROPOSITION. If S :A~> ENSr is a point separator, then sep S
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Is injective. If A has products and U preserves products, then sep S is

productive.

Proof. If u : E — > F is injective, then ur I = I_ . If E = T T E . in

ENS with projections ;r. , then / ] fa.r !„ ) = !„ in r E , These properties

of reflective relations are easily verified; 8.3 is based on them.

If f : A 5> B in A with U f injective, then a^ (u f) r sB = L.. if

B is separated, and thus s^ = IUA . If A = T~<~A. in A with projections re.

and all A± separated, then sA ̂  ((((U^)1* IUAJ in r U A , and sA = 1 ^

follows if U preserves products 0

8.4. COROLLARY. If A is factored and colocally scall, and if U : /f\ — >

ENS preserves products and monoEorphisms, then sep S is an epireflective sub-

category of J\ for every point separator S on A «

Proof. This follows immediately from 8.3 and 7.40

8.5. DEFINITION. We say that a point separator S* on A is finer than a

point separator S , and we write S' ̂ S , if id U A : Sf A —> S A in ENSr

for every object A of A , or in other words if always s' ̂  s. in r U A .

If S• -— S , then sep S clearly is a subcategory of sep S' .

Different point separators may produce the same subcategory sep S . We say

that a point separator S on A is coarse if S' ̂ S for every point separator

S' on lr\ such that sep S is a subcategory of sep S • .

8.5. THEOREM. If 3 is a reflective and injective full subcategory of a

concrete category A , then ̂  = sep S for a unique coarse point separator S

on A .
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Proof. We write f for U f in ENS or ENSr if f &./A. We put

s^ = h I u c in r U A if h : A — ^ C is a reflection for i3 . Since h is

determined by A up to an isomorphism u : C — y C in S , this determines

s^ uniquely, s^ = IyA only if h is injective. But then A<£ Ob TB. Con-

versely, if A 6 Ob IB, then h is isomorphic, and s. = ITT. .
« UA

If f : A — > A1 in A , and if h : A — 9 C and k : A1 — 9 C are

reflections for S , then k f = g h for a norphism g : C — > C' . But then

SA " h I

in r U A . Thus the relations sA define a point separator S : A — > ENSr ,

and we have already seen that 1B> = sep S .

If TB> is a subcategory of sep S • for a point separator S' on J\ and

h : A — 9 C a reflection for & , then s• .•< h r s' = hr L.-, = s, . Thus S is

coarse, and hence uniquely determined by B j]

8.7. RKMARKS. We may call a point separator S strict if all relations

s. are in fact equivalence relations. Since sets with equivalence relations

form a top subcategory of EUSr , one sees easily that for every point sepa-

rator S there is a finest strict point separator S ]>- S , with sep S.

= sep S . Thus coarse point separators are strict. Strict point separators over

TOP were studied by Sharpe, Beattie and Marsden, who obtained 8.3 and the first

part of 8.8 below.

We need the following definitions. We call f £ / \ a P-ouotient map for

a functor P : j\ ~* C if f is P-opfibred (l.l) and P f epiznorphic in C ,

For a top category (ENSP, P ) over ENS , this coincides with the usual con-

cept of a quotient map. A morphism f : A -—> B of a category $K is called
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reflective over a full subcategory $$ of J\ if for every morphism g : A — ^ C

in A with C £ ObS . there is a unique morphism h : B —?> C in A such that

g = h f . This includes all reflections for IB and all isomorphisms of #K , ,

and reflective morphisms over i3 form a subcategory of $\ .

8.8. PROPOSITION. Let S. be a point separator on A , and let f : A

— > B j,n, A . I£ f is a U-quotient map and sA = (u f )
r sB , then f is.

reflective over sep S . Conversely, if S is coarse and sep S reflective

ia A , and if f is reflective for sep S , then s^ = (U f) r sB .

Proof. Write again f for U f if fGj\. For the first part, let g :

A —-> C with C 6 Ob sep S . Then f* 1 ^ <£fr sB « BA£g
T sQ « ̂  in

r U A . This means that f(x) = f(y) ==$> g(x) = g(y) for all x , y in U A

As f is sustfective, it follows that g = h f for a unique h : U B-—>U C .

As f is U-opfibred, h lifts to a unique morphism h : B — > C . Thus f

is reflective over IB .

For the second part, let h : B — ^ C be the reflection for sep S . Then

h f : A —> C is a reflection for sep S as f is reflective. Thus

8A - < h f)

by the proof of 8.6, as required0

8.9. EXAMPLES. For a topological space A and points x , y of A , put

x sA y if x and y have the same neighborhoods in A , and put x s! y if

x is in the closure of [y\ for A . This defines point separators S and S1

on TOP , with S coarse and S' not even strict. Objects of sep S are To

spaces, and objects of sep S1 are T^ spaces. T2 spaces also are obtained
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from a point separator. Aull has given a long list of point separation axioms

and references to yet more axioms. One example for which we do not have a con-

venient point separator are the spaces for which every compact set is closed.

Regular and completely regular spaces do not define injective subcategories

of TOP . Thus T, and T_i are not point separation axioms.

9. TOP CATEGORIES OP ALGEBRAS. For every category ̂ \ of algebras, a cate-

gory A of topological algebras over J\ can be constructed, and /\ turns out

to be a top category over A . We generalize this construction in an appropriate

categorical setting.

9.1. OPERATIONS. Let U : A~?d- be a functor. We call operation over

U or by abuse of language operation in ̂  a triple (D,W,R) consisting of

two endofunctors D and R of ^ and a natural transformation CJJ : D U — >

R U . This is not the most general concept of an operation. For instance, the

"relational systems" of universal algebra, and filter convergence in topology,

are excluded. A categorical definition of operations which includes these cases

has been given, but the theory of this section has not been generalized to this.

Operations in algebra are included in the definition given above. An n-ary

operation in a category ft\ of algebras, with underlying set functor U : A — ^

ENS , associates with every algebra A £ Ob A a mapping CO. : (U A ) n — > U A ,

and every morphism f : A — ^ B of A satisfies f w . = COB f
n . Thus U) is

a natural transformation W : D U —^ R U , where D f « / : E n — ^ F 1 1 for a

mapping f : E — f F , and R = Id ENS .

9.2. ASSUMPTIONS. We are concerned with the following situation. A func-
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tor U : $\-^ <C, a family Si- •- (D^tt1, R 1 ) J . £ I
 of operations over U , and

a top category € q over C are given. Moreover, all functors D1 and R can

be lifted to endofunctors A and p^ on (£. q , with structure maps <J i and

p^ respectively. We wish to lift /\ and U to a top category AP and a func-

tor / J $** —?<£ q such that every operation in jZ can be lifted to an opera-

tion (AxtU> ,PX) over Y . The following diagram illustrates this.

We make A ^ and / unique up to isomorphism by requiring a pullback property.

9.3. THEOREM. Add to the stated assumptions the condition that P 1 is.

taut over R for every i G. I . Then a top category ̂ P over A and a func-

tor V : A P — ? £ q which lifts U existf with the desired property and with the

following pullback property. If U P = Q<$> for functors P : /*•—^#K and 0 :

? ^ and if p. family ( ^ f X 1 ^ 1 ) ^ ! of operations over Y exists

such that Q^ 1 = U)1 P for all i £ I , then F = P T and 0 = Y T for a

unique functor T : )£ —•>^ " . These conditions determine ̂ \ and j up to an

isomorphism of top categories which lifts Id A . Moreover. V is taut over U

and has infective structure maps "U> .

Proof. For A €. 0b/\ , let p A be the set of all x ^ q U A such that

W | :Ai (U A, x)-> Pi(U A, x) in (L q , i.e. £JA x ̂ (u»^)
qp j A x , for all

i G I , and let 2A : p A — > q U A be the inclusion map. We claim that this

does the job.

If A £ O b ^ and ^\\^v *s a family of elements of p A , then
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for all i£l I , since the maps £>.„. preserve infima. Thus [ j x, , taken

in q U A , is in p A . This shows that p A is a complete lattice, and that

Z>£ preserves infima.

Similarly, if f : A — } B in A and y 6 p B , then

^ A (U f)q y ^ (D U f ) ^ B y ^ (D U f) q

- K ) q (R u
for i £ I , by (4.2.l) for A 1 , naturality of tJ* , and tautness of P 1 .

Thus (U f ) q maps p B into p A , and Vk f
P = (U f ) q V^ for a unique map

fp : p B — ^ p A in ORD .

The maps fP clearly preserve infima, and the sets p A and maps f^

define a contravariant functor p : A O p — ? ORD . Thus /& is defined, and the

maps z\ are the structure maps of a functor Y : A —?<Cq which lifts U

tautly. Moreover, u;^ : A 1 Y(A,x)—5> P 1 V(A,x) in C q for every object

(A,x) of A^ by our construction, and thus the operations in SI can be lifted

to operations (A ,to f P ) over Y , as desired.

It remains to verify the pullback property. If F and (p are given, then

we can put (ft X = (u F *,(Py) , with ^ ^ q D P X , for X £ Ob>v , and then

f x^(UFh)
qC> Y for h : X — ^ Y in X . The ̂ x must satisfy

* X = ^PX : A 1 (U F X, ̂ x) - ^ P
1 (U F X, ^ )

for X £ Ob X . Thus p x & P F X for all X £ Ob X . The only way to define T

such that F = P T and (£> = YT is to put

T h = F h : (F X , ^ X ) — > (F
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for h : X — ? Y inX . Since <px £ p F X , this maps Ob J£ into Ob A
p .

We have ^ ^ ( U P h^^y = (F h)*Vx ' and thus T h : T x ~^ T Y in A P .

Since P T is a functor and P faithful, it follows that T is a functor.

The pullback property implies that $ and V are defined up to an isomor-

phism over Id ff\ , and we have already proved the last part of the TheoremQ

9.4. COROLLARY. If U : J\—> C in 9.3 has a left ad.ioint P : £ T — > A ,

then P can be lifted cotautly to a left ad.ioint 0 :<£ q—?>^ p of V" .

Proof. This follows immediately from 5.4Q

In 9.1, we call <A operational over <£ , for a family SI. of operations

over U , if U is faithful,and for every morphism f. : U A —5>U B in <£

such that OO-Q (D f j = (R f-\)&t f° r & H operations in J Z , there is a (unique)

morphism f : A •—^ B in ^ such that f. = U A .

9.5. PROPOSITION. If /\ in 9.3 is operational over £ , for the given

family SL of operations, then A P is operational over C ^ for the family of

all lifted operations

oof. Since P is faithful, V is faithful if U is . If f1 : (if A, x)

? (U B, y) in <C q , with x£- p A and y <~ p B , ie homomorphic for the

lifted operations, then f, : U A — > U B in £ is homomorphic for the opera-

tions in SI. If f = U f for f : A —?>B in A , then x ^ f p y = (u f ) q y

in p A , and thus f, = Vf for f : (A,x) •—? (B,y) in £' *. Combining these

statements, one sees easily that ,A is operational if r\

9.6. APPLICATIONS. The familiar categories of Algebra are operational over

ENS for operations (Dn,w, Id ENS) of finite arity n , where iP f - f" :
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ET-—>F^ for a mapping f : E — > F . Another operational category over ENS

is the category of compact Hausdorff spaces, with a single operation (D,tofR) ,

where D is the (covariant) ultrafilter functor on EMS , R = Id ENS , and

k>4 is the convergence of ultrafilters for a compact Hausdorff space A .

If ENSq is a top category over ENS , we lift Id EMS to Id ENSq .

This is of course taut over Id ENS , as required for a range functor by 9.3.

n An / \ n

Lifting D is easy: let A (£,x; be E provided with the product structure

(see 5.3) of n copies of (E,x) . The usual categories of topological algebras

result from 9.3 and these functors An if ENSq = TOP . For other top cate-

gories ENSq , we get categories of uniform algebras, of convergence algebras,

of proximity algebras, and so on.

Another way of lifting the functors Dn is described in 9.7 below. This

leads to categories of topological algebras with separately continuous operations.

If ENSq is a top category with filter convergence, i.e. with a top functor

f~: ENSq •—> CONV to the category of convergence spaces, and with a suitable

notion of regularity, then the ultrafilter functor D : ENS — > ENS can be-/,

lifted. A top category over compact Hausdorff spaces results. We have not

investigated this queer animal.

By 5.3» all categorical limits and colimits can be lifted from a category

&\ of algebras to a category ti\^ of algebras with some kind of topological

structure. This is well known for limits, but seems to be not quite so well

known for colimits. 9.4 was first discovered for topological groups by Samuel;

the general result seems to be new.

The definition of algebras by operations is by now old-fashioned. However,

it is much easier to lift operations than triples.



STC 37

The following special case may be of interest. If -A in 9.3 is a category

of algebras andiC q = ENSe , the category of equivalence relations (3.6), then

an object of r\p is an algebra A <£ Ob -A with a congruence relation.

9.7. SEPARATE CONTINUITY. Let E » | I E± be the product of a family

(Ei).g of sets, with projections 7C : E—3> E. . Me call a mapping h :

E — > E an injection of E. into E if jc-. h = id E. , and /t . h : E. — > E.
X X X X J X J

is a constant map for all j / i . This requires that either all sets E, are

non-empty, or all sets E. empty.

If a top category ENSq over ENS is given, and if ((E.,X. )). -, is a

family of objects of ENSq , then we call weak product of the (E.,x.) the

object (E,x) of ENSq with E = TT" \ and x = (J h x± , for all i 6 I and

all injections h : E i — 9 E . If a family of maps f. : (E.,x.) — ^ ^i'^i^

is given, and if (E,x) and (F,y) are weak products, then we note that TT" fj *

(E,x) — ^ (F,y) in ENSq . For if h : E . — ^ E is an injection, then one sees

easily that (JT f.) h = k f. for an injection k : ¥ — > P . Thus

for f = TTf. and all possible injections h : E. —^> E and k : F. —=? F .

In particular, if (En,£g x) is the weak product of n copies of (E,x) ,

then fn : (En,S% x) — ^ (Fn,cTg x) in ENSq if f : (E,x) - > (E,y) . This

provides an other lifting of the functors Dn . A map u : (En, 3^ x ) — > (E,x)

is called separately continuous. Thus this lifting of the functors Dn provides

us with categories of topological algebras with separately continuous operations.

9.4 and the lifting of limits and colimits from P\ to $\ remain valid for

these categories.



STC 38

10. C0T0P SUBCAT2GGRIES. Gleason pointed out first that TOP has non-

trivial coreflective subcategories. Kennison proved that every non-trivial full

replete coreflective subcategory of TOP is, in our language, a cotop subcate-

gory. Herrlich pointed out that this is due to the fact that every object of

TOP is initial (the empty space) or a generator. We provide in this section a

generalization, due to Shukla, of Gleasonfs construction of coreflective subcate-

gories of TOP , and we generalize Kennison's theorem.

10.1. THEOREM. A subcategory J^> of a top category $\ is a cotop sub-

category of A p if and only if there is a functor T : A P — > A P with the

following properties.

10.1.1. T lifts id A .

10.1.2. id A : T (A,x) —^U,x) in A P for every ob.iect (A,x) .of

10.1.3. Tu = u for u<^AP if and only if u&B.

Proof. If JS is cotop, and if I : S — * A ^ is the embedding functor and

J :fip—? 1B> the top right adjoint of I , then T = I J satisfies all condi-

tions. Conversely, assume that T exists, with structure maps T\ : p A —J>p A

for A £ Ob/N . Then xr x 4= x for x ^ p A by 10.1.2, and TB is clearly a

full subcategory of A P , with (A,x) £ ObB if and only if (A,x) e ObAP

"T. x = x . We show that $•> satisfies the dual conditions of 6.3.2.

If (O-i^TT is a family of elements of p A such that ~r^ xi = x^ for

all i£I , then x. ̂~c ((Jx.)^ Ox, for i<^I . Thus r-.(U^) = (Jx.

and the dual of 6.3.2.(i) is valid for JB . If f : A — ^ B in A and x^rp A ,

then f " Â x ^ T ^ f x by the dual of (4.2.1). If r A x = x , it follows that

f
p x ̂ Tj f x ̂ f x , and thus the dual of 6.3.2.(ii) is satisfied!]
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10.2. We recall some definitions. An object C of a category A is

called terminal if for every A £ Ob A there is exactly one morphism f : A — > C

in A . Dually, C is called initial if for every A <£0bA there is exactly

one f : C —^ A in A . We call C £ 0 b A a generator of A if for every

pair of morphisms f : A — > B and g : A — > B of A such that f ^ g there

is a morphism u : C — > A such that f u / g u . A bimorphism of A is a mor-

phism of /P\ v/hich is both epinorphic and monomorphic, and #K is called balanced

if the isomorphisms of A are the only bimorphisms. A full-subcategory SB of

J\ is called epirefleetive (or monoreflective or bireflective) if 22 is reflec-

tive with epimorphic (or monomorphic or bimorphic reflections). Monocoreflective

and allied terms are defined in the same way. We state and prove two results of

Herrlich for coreflective full subcategories.

10.3. PROPOSITION. If a full aubcategorv B of. A is epicoreflective.

then J2 is monocoreflective and hence bicoreflective.

Proof. Consider a diagram

B» ^—i, A' * B
U

E >

where u and u1 are coreflections. If u f = u g , then u (f u1) = u (gu 1)

with f u' and g uf in B . But then f u' = g u' , and f = g follows if

u1 is epimorphic0

10.4. PROPOSITION. If a full subcategpgy B of A is coreflective and

there is a generator of A in 0b#$ , then Jfi> is bicoreflective.

Proof. By 10.3, it is sufficient to show that every coreflection for © is
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epimorphic in //K . Thus let u : B —^ A be a coreflection and f u = g u .

If h : C — > A with C <£ Ob B , then h = u h ' for a unique h ' g B , and it

follows that f h = g h . If C is a generator of A , then f = g follows 0

The following result provides generators for top categories over ENS .

10.5. PROPOSITION. If ENSP is a top category over EMS such that p S

is a singleton if S is a singleton, then every ob.iect (Cfz) of. ENsP with C

non-empty is a generator of *1

Proof. Let f : (A,x) — ? (B,y) and g : (A,x) —•> (B,y) with f ^ g ,

and let (S,s) be a singleton with its unique structure. There is a mapping

h : S — > A such that f h / g h , and then f h k •/=• g h k for the unique

mapping k : B — > S . We have necessarily LJ~ = s = hp x . Thus 1^ s = U)L ,

and h k : (C,z) — > (A,x) in ENSP with f h k ^ g h k .

10.6. COROLLARY. If EMSP is a top category over ENS such that p S is.

a singleton if S is a singleton* and if jj? is a full replete coreflective sub-

category of ENSP which has an ob.iect (C,z) with C non-empty, then /B is a

cotop subcategory of ENSP .

Proof. By 10.5 and 10.4, every coreflection u : (B,y) — > (A,x) for M

is bimorphic in ENSP , and then u is bijective by 7.1. It follows that u :

(B,y) — p (A, U y) is an isomorphism of IB , by the dual of 7.2 and the fact

that ^ is replete. But then u u = id A : (A, u y) — > (A(y) is also a

coreflection for JB » and IB is cotop by the dual of 6.30

10.7. EXAMPLES AND REMARKS. The condition that p S is a singleton for a

singleton S is satisfied by many categories ENSP of interest in general topo-
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logy. Topological spaces, uniform spaces, convergence spaces, uniform convergence

spaces, proximity spaces are examples. The following example shows that 10.6 is

not valid without this condition.

Let ENSP be the category of pairs of sets (3.7), and let j& be the full

subcategory with pairs (B,B) as objects. We claim that J5 is monocoreflective,

but not epicoreflective, and hence not a cotop subcategory of BNB^ . Indeed,

let X C A , and let j : (x,x) — > (A,x) be the inclusion map. This is mono-

morphic, but not epimorphic if X / A . If f : (B,B) —>(A,X) , then f maps

B into X , and thus f = j f• for a unique map f• : (B,B) — > (X,X) . Thus

j : (X,x) — ^ (A,x) is a coreflection for JB.

ENS is of course not the only category with the properties needed for the

proofs of 10.5 and 10.6. For example, every full subcategory of ENS with a

singleton among its objects qualifies.

11. IMAGES AND RELATIONS. We present in this section the categorical back-

ground for a theory of continuous relations. Images in the sense of this section

were investigated by H. Ehrbar and the author jointly, and relations by A. Klein

and the author independently.

11.1. IMAGES. Let $\ be a category and JT a class of morphisms of <A •

We call J-image of f €: /f\ a pair (p,j) of morphisms of A such that j p = f

in A and j 6 3T , and whenever v f = g u in A with g 6 3 , then u = x p

and g x = v j in #\ for a unique x € A . Note that no conditions are put

on 3 in this definition. In particular, we do not require that 3 consists of

monomorphisms of A . We say that ̂  has Jfi -images if every f£-J?\ has one.

In the following, we usually omit the prefix 3 .
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We say that f £ A is J -strict if for v f = g u in A with g £ A

there always is a unique x 6r -A such that u = x f and g x = v in ̂ \ . If p

is J-strict and j p definedin A with j^TJ , then (p,j) is an image

of j p . However, p need not be J-strict if (p,j) is a J-image.

11.2. SUBOBJECTS. Let us call f and f' in A left equivalent if

f = f u in. A for an isomorphism u of A . A left equivalence class of mor-

phisms f£:<A with codomain A & Ob ̂  and at least one representative in Jj is

called a J-subob.ject of A . It will be convenient to assume, and we shall do

this, that there is a class Uo of morphisms of d\ such that every left equi-

valence class with a representative in 3 has exactly one representative in "3O .

If f&A has a J-image, it follows that f has a JQ -image (PQ»JQ) with j Q

(but possibly not pQ) uniquely determined by f . IS. A has .-J-images, then

every isomorphism of A is left equivalent to some jf^A . Thus we may assume,

without loss of generality, that all identity maps of A are in JQ , and we

shall do this. It follows that f : A —^ B is .#-strict if and only if

(f, id B) is the (unique) X -image of f .

11.3. IK&GE FUNCTORS. J defines a full subcategory &2[! ] of the mor-

phism category /^ (see 1.2); we denote by I the embedding functor. One sees

easily that (p,j) is a J -image of f : A - ^ B , in ^ If and only if

(p, id B) : f — ^ j is a reflection for A"~[TJ ] in ̂  . It follows that ^

o c
has 37-images if and only if I has a left adjoint functor im : A

and a front adjunction TC : id A "~^ I im such that Dj I in = D, and D,7tr

= id D. . We call the pair (im,7i:) , or by abuse of language just the func-

tor im , a TT-imafce functor for $\ .
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We make the image functor im (but not necessarily 7c ) unique by requiring

that im f C ~R0 for every f € J . This is no loss of generality.

If/^ has J -images, then the functor D I :A [3J]—^A is an opfibra-

tion (l.l). If </j\ has pull backs and images, then D- I is also a fibration,

A P-fibred morphism of fl\ [37] , for P = D. I , is called an inverse imaf*e.

and a P-obf ibred morphism a direct im&g&.

11.4. RELATIONS. We assume from now on that A has finite limits, i.e.

products and pullbacks, and 7-images. If A and B are objects of A , then

a ̂ -subobject of A X B is called a ̂ -relation from A to B . It will be

convenient to replace the 7-subobject by its unique representative in 3£> ;

we shall always do so. A change in ^o will change this representative, but

it does not change the composition of relations or anything else which we may

want to do with relations.

Relations from A to B are the objects of a category Rel (A,B) . Mor-

phisms of this category are morphisms (u,v) : j — ^ j 1 in (L [~fj ] with j , j1

in ~$Q and v = id (AX B) . If J\ is j?-locally small, i.e. if subobjects of

every A ^ O b A form a set, then Rel (A,B) is small. If .A is 37-locally

small and J consists of monomorphisms of A » then Rel (A,B) is an ordered

set (partly ordered set if the reader prefers to say so) in which every finite

family has an infimum. If /\ is not only finitely complete but complete, then

Rel (A,B) is a complete lattice.

If A •<; C —^—> B in <A , then f and g induce a unique morphism

-Jf,ĝ  : C — > A ^ B , and im-ff,gT is (a representative of) a relation from

A to B . We denote this relation by [f,g] .
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11.5. COMPOSITION OP RELATIONS. Two relations u : A — > B and v :

B — ^ C over Jk , i.e. subobjects u of A X B and v of B X C , determine

a diagram as follows (with dashed arrows omitted).

u

AX B

If

A X C

B

v
f

B X C

c

In this diagram, arrows like A X B —>• A are projections. We construct a limit

L of the diagram in ft\ f with the dashed arrows as projections, and we put

v o u = im f : A -—>C ,

for the projection f : L — > A x C of this limit.

Composition of relations defines composition functors:

Bel (A,B), X Rel (Bfc) —> Rel (A,C) ,

but composition of three relations is in general not associative.

11.6. Consider a diagram in A

in which the square is a pullback. If the functor I im :

pullback squares, then we always have

(11.6.1) [ f , e ' l ° [f.g] = [f f", g1 g"]

A2
preserves
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in this situation. It follows that composition of relations over $>\ is associa-

tive if I li preserves pullbacks. In general, (l.6.l) can be proved only for

the case that -{f.g^ and 4f'»&'5 are in JS , up to left equivalence.

11.7. We define a relation rel f over A for f £ A by putting

rel f = [id A, f ]

for f : A — ^ B in J/\ . A relation of this form is called functional.

If every coretraction in A (i.e. every f € A with a left inverse) is

in 3 , up to left equivalence, then (ll.6.l) is valid for functional relations,

and rel is a functor, or more exactly a pseudofunctor, from A to the "bicate-

goroid" of relations over J\ . Moreover, rel id A = [id A, id A] acts as

identity relation on A , for A£r Ob/V , not only for functional relations but

for all relations in this situations.

11.8. EXAMPLES AND REMARKS. Good behavior of relations clearly depends

on two properties which images may or may not have;

(i) the functor I im : A —>fl\ preserves pullback squares;

(ii) every coretraction in $\ is in 3 , up to left equivalence.

In the more special situation investigated by A. Klein, (ii) is always satisfied,

and (i) is equivalent to the universal validity.of (11.6.1), and hence to the

associative law for the composition of relations.

Examples are: sets with subsets as subobjects; groups with subgroups as

subobjects; topological spaces or Bausdorff spaces with subspaces as subobjects;

topological spaces or Hausdorff spaces with closed subspaces as subobjects;

groups with normal subgroups as subobjects. (i) and (ii) are valid for the first

four examples. 3 consists of all extremal monomorphisms of $K in the first
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three examples, and for Hausdorff spaces with closed subspaces as subobjects.

Hausdorff spaces with closed subspaces satisfy (ii), but not (i). In the last

example, groups with normal subgroups, im = ker coker defines an image functor,

but neither (i) nor (ii) is valid.

12. CONTINUOUS RELATIONS. A relation u : A —-» B between topological

spaces has been called continuous if u~ (Y) is closed in A for every closed

Y c B , and open for every open Y . This works reasonably well but it can

hardly be generalized to other situations. We propose in this section a general

definition of continuous relations over a top category which seems to work quite

well. For TOP , our definition is not equivalent, but quite close, to the

definition mentioned above.

12.1. LEMMA. If /^p is a top category and f : A — > B in A , then the

following statements are valid.

1 2 . 1 . 1 . x ^ f P y 4=$> f x ^ y for a l l x £ p A and y £ p B .

12 .1 .2 . x < f P f x and f fP y ^ y for a l l x £ p A and y £ p B .

1 2 . 1 . 3 . fP f fp = fp and f fP f = f .
P P P P

12 .1 .4 . f in fec t ive 4=#> fP sur.jective <£=5> fp f = id p A , andin fec t ive 4 # > f sur.jective <£5> f f

f sur.iective <£=» fp in. iective 4 = ^ f fP = i d p B .

Proof. 12.1.1 is a restatement from 2.5, and each of the other statements

follows immediately from the preceding oneQ

12.2. PROPOSITION. If ̂ p is a top category over A , and if a commuta-

tive square
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i n A i s g i v e n , t h e n u v p x ^ g F f x j ^ p B f o r e v e r y i £ p A .

Proof. Using 12.1.2, we have, equivalently,

vp x ^ vP f P f x = up gP f x
P P

for x £ p A 0

12.3. DEFINITION. Let A P be a top category over A , and let A have

finite products and pullbacks, and 3 -images for some class J of morphisms

of #K , so that relations over J\ are defined. For objects (A,x) and (B,y)

of A p , we define a relation, or continuous relation, u : (A,x) — > (B,y) as

a relation u : A — ^ B with the following property. If (C,z) is an object

of A P and if f : G — ^ A and g : C — ? B are morphisms of A such that

\f ,g\ ~ u (h for some (pfc^\, then z^f^.x always, implies z ̂  gP y .

In other words, we require that continuity of f always implies continuity

of g if {f,g\ factors through the sufcobjeet u of A X B in A .

The following added definition will be convenient. We say that Jl -images

are p-taut if up u = id p X for every J} -image (u,j) of a morphism f :

12.4. PROPOSITION. If a relation u : A — > B over A is represented by

A«-£ £-»B i n A , then u : (A,x) — * (B,y) £c£ x^-p A

and y £ p B if and only if g fp x n*L y , ,pj. "fP x .< gP y
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Proof. We have u = jf ,g } , up to left equivalence. If {fig^ = u a

it follows that f = lap and g = gap , and . ('

for x ^ p A , by 12.1.2. Thus u : (A,x) —>. (B,y) if g f p x ̂  y Q

12.5. PROPOSITION. Le_t ̂ p be a top category over A , and let A have

p-taut images. If A ̂ - i — , —§L^B in ̂ \ , then [f,g] : (A,x)—£> (B,y)

over A ^ » for x ^ p A and y g p B , if and only if g f x ̂  y .

Proof. If [f,g] is represented by j = j?,g^ in %& , then f = ¥ u and

g = g u for an image (u,j) of yf.g\ . It follows that

g p f
P x = g p u p u

p f p x = i p f
p x ,

and nov.T 12.5 follows immediately from 12.4[}

12.6. PROPOSITION. Let. A P be a top category over A , and let A have

p-taut images. If u : (A,x) — ^ (B,y) and v : (B,y) — > (C,z) are continuous

relations, then v o u : (Afx) —5> (C,z) is continuous. If f & A, then f :

(A,x) --? (B,y) in A P if and only if [id A, f] : (A,x) — ^ (B,y) over AP •

Proof. If |f,gl represents u and {f'tg1^ represents v , then we can

use (ll.6.l) for the product, and we find that

(*' g")p(f f»)
Px = (g')p(g")p(f")

PfPx

^ (g')p(f')
pgpf

px 4: (g')p (f)
py ^ > ,

with 12.2 used in the second step, if u and v are continuous. Now use 12.5.

Also by 12.5, f x .̂  y is the continuity condition for fid ft f] and for f..(J
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12.7. REMARKS. If we use the usual images in EMS , with subsets as sub-

objects, then relations over ENS are relations in the usual elementary sense.

In this case, images are always taut. For if (u,j) is an image, then u is

surjective and has a right inverse. Thus u p has a left inverse and is injec-

tive, and u u^ is an identity map by 12.1.4. More generally, images in ^

are always p-taut if ^ is a category of algebras, with subalgebras as subob-

ject, and with jfi? constructed from a top category ENS^ as in section 9.

Except for trivial situations, relations u : (A,x) — f (B,y) over a top

category A ^ are not relations over fi? in the sense of 11.4, and the results

of section 11 apply only to the underlying relations u : A — > B over ff^ .

Relations in the sense of 11.4 would be subspaces of product spaces, and not con-

tinuous relations in any useful meaning of this term.

Much work remains to be done on continuous relations; this section is just

a start. Many questions remain. For example, we have a commutative diagram

A

with bicategories, in the Benabou sense, of continuous relations over fa? and of

relations over fl\ at right. What is the exact categorical nature of this dia-

gram? This is just one of many questions.
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