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Abstract

This paper introduces a model for drug initiation that extends tra-
ditional dynamic models by considering explicitly the age distribution
of the users. On the basis of a 2-groups model in which the population
is split into a user and a non-user group the advantage of a continuous
age distribution is shown by considering more details and by yielding
new results. Neglecting death rates reduces the model to a single
state (1-group) descriptive model which can still simulate some of the
complex behavior of drug epidemics such as repeated cycles. Further-
more, prevention programs — especially school-based programs — can
be targeted to certain age classes. So in order to discover how best
to allocate resources to prevention programs over different age classes

we formulate and solve optimal control models.

Keywords: Nonlinear dynamic system, age-structured model, illicit drug,

partial differential equation, optimal control.



1 Introduction

Often models of drug initiation and drug use are based on the same prin-
ciples as epidemiological models, because drug use is clearly contagious in
the sense that use by some individuals affects the probability that others
will use through multiple mechanisms. In a very literal sense, most users
are introduced to drug use by a friend or relative; the more drug users there
are, the more likely an individual is to be offered the drug (see Kaplan [14]).
At a market level, the larger the market, the more diluted the enforcement
risk, and the safer it is to try drugs (see Kleiman [17]). At a reputational
level, experiences of others can be instrumental in shaping perceptions of the
riskiness of drugs, and those perceptions in turn influence initiation. Indeed,
the very fact that the mechanism of transmission does not involve physical
contact or interaction means that the dynamics of contagion can be more
complex and more interesting.

Looking at drug use and the process of initiation in more detail, it is clear
that the decision of a non-user to start consumption depends strongly not
only on the individual’s immediate, personal social environment, but also
on the overall reputation of a drug in society, e.g., as portrayed in movies
or news media. That means, an individual might want to use drugs even if
none of the individual’s associates encourages that desire. And, conversely,
an individual may fear drugs even if no one he or she knows has suffered
harm from them.

Cycles or epidemics of greater and lesser drug use have been observed

for licit and illicit drugs over extended periods of time. Behrens et al. [3, 2]



formalized one possible explanation of these cycles. Newly initiated users are
presumed to be light users, and light users promote further initiation through
a contagion effect, creating a positive feedback cycle. Over time, some light
users escalate to problematic or heavy use. Those heavy users then serve as
a sort of negative advertisement for the drug, suppressing further initiation,
until the memory of those heavy users decays, paving the way for a renewed
cycle of initiation.

Here we explore another model of reputational feedback that by itself can
account for explosive growth, a subsequent negative feedback, and, at least
for some parameter values, cycling. The key extension is the notion that rep-
utation feeds back differently to, and perhaps even from, people of different
ages. The Behrens et al. papers do not model the individual’s ages explicitly,
so there is just one universal reputation level and initiation is aggregated,
not age specific. Here we allow for the possibility that a given substance
could have a positive reputation among some age groups (e.g., the young) at
the same time it has a negative reputation among others (e.g., their parents).
Furthermore this difference is not generated exogenously, e.g., by postulating
that youth and their parents read different books or watch different televi-
sion shows. Rather, it emerges from plausible hypotheses concerning how
experience with drugs by one age or birth cohort might influence the at-
tractiveness of that substance to people in other cohorts. That is, it is the
age-specific pattern of drug experience that generate the age-specific repu-
tations and associated influences on initiation. It is, in that sense, a model
of how intergenerational interaction can influence consumption dynamics as

well as a model of drug use per se.



Note there is evidence of both short-term and long-term cycling in drug
use. E.g., contemporary variation in US marijuana initiation [13], Australian
heroin initiation [15], and Italian heroin overdose deaths [24] shows some
evidence of oscillations with a period of 5-12 years. Over the long term,
there have been several distinct peaks in US alcohol consumption over the
last 150 years and two peaks in heroin and cocaine consumption — one in the
early 1900s and one around 1990 [25, 21, 22]. Similar cycles are observed
in other countries, including for alcohol in Australia [9] and stimulants in
Japan [28]. The intergenerational dynamics investigated in this paper would
seem more likely to bear on those long-wave cycles than on oscillation with
a period of less than 20 years.

The Behrens et al. model in which heavy or addicted use dampens ini-
tiation is most appealing for so-called hard drugs such as cocaine or heroin.
This model, with its emphasis on social interaction, may be more appropri-
ate for other drugs such as marijuana or cigarettes. Since it does not rely on
addiction mechanisms, it might even be useful for modeling other consumer
behaviors, such as preferences for styles or brands of clothing.

A simple way to introduce age is to split the population into different
age groups. This leads to compartment models but with a large number
of population groups (see Swan [27]). Analysis of such models is difficult,
and it is necessary to increase the number of age groups in order to get
a better approximation. A more general and more elegant method is to
include age as a second parameter in addition to time. So a continuous age
distribution of the population can be fully taken into consideration, and the

model description and analysis is independent of the number of age groups



for which data are available. The analysis of such a model becomes in some
way easier, because there are fewer groups to consider, but in some sense
also more complicated, because this method leads to a system of partial
differential equations — a further development of the so-called McKendrick
equation (see Keyfitz and Keyfitz [16]).

In epidemiology, several papers on age-structured models are available.
Murray [20, pp. 640-650] describes a simple SI (susceptible — infected)
model with an age-dependent infectiousness, which can be solved analyti-
cally. Busenberg et al. [5] and lannelli et al. [12] investigate the global
behavior and threshold properties of age-structured SIS (susceptible — in-
fected — susceptible) models, and Miiller [18, 19] concentrates on optimal
vaccination patterns for age-structured SIR (susceptible — infected - recov-
ered) models, but without time-dependence of the control.

Although the epidemiological models are very similar to the model de-
scribed in this paper, there are some essential features in drug initiation,
which do not allow one to transfer blindly the results to the initiation mod-
els.

This paper is organized as follows. We start with the formulation of the
descriptive model in section 2, followed by a description of the analytical
and numerical methods necessary for simulation and optimizing experiments
in section 3. In section 4 results are discussed for both simulation of the
uncontrolled model and the design of optimal prevention programs for a
slightly simplified model. The paper ends with general conclusions and an

outlook to future work in section 5.



2 Model Formulation

2.1 Development of Model Equations

We consider a population divided into two groups: non-users and users (or
drug consumers). Neglecting any death or migration and assuming constant
birth cohort size, the sum of the non-user and the user populations is always
constant, so it is sufficient to consider only one state (e.g., the non-user
population).

Furthermore, only the flow from the non-user state into the user state is
taken into consideration, which means that once an individual has consumed
drugs, he or she will never stop being identified as a drug consumer. So the
user population does not represent the number of current consumers (past-
year prevalence), but rather the number of people who have ever used drugs
(lifetime prevalence).

The following equation describes the non-users’ dynamics in terms of
P(t,a) — the number or population of non-users aged @ at time ¢ — and

p(t, a) — the initiation rate:
P, + P, = —u(t,a)P(t,a). (2.1)

In essence this so-called McKendrick equation (Keyfitz and Keyfitz [16]) sim-
ply says that the rate of change of the non-users equals (minus) the per capita
initiation rate times the number of non-users, but it does this for a contin-
uous distribution of ages (a), not just an aggregated pool. The initiatial
conditions give the number of non-users of various ages at time t = 0, and

the boundary condition specifies how many people of age a = 0 are born at
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each time, i.e.

P(0,a) = Py(a), (22)

P(t,0) = k,
for a finite planning horizon ¢ € [0, 7] and age range a € [0,w|, where Py(a) is
the initial population distribution at ¢ = 0, and £k is a fixed birth cohort size.
(We choose k =1 and so interpret P(t,a) as the proportion of non-users.)
The rate of initiation p(t, a) is assumed to be the product of three different

factors:

1. a basic, age-specific initiation rate fi(a) representing the probability
that a non-user starts drug consumption without any influence from

others or prevention;

2. the influence ®(R(t,a)) of the reputation of the drug R(¢,a) on the

initiation of a non-user of age a; and

3. a prevention factor ¥(w(¢,a)) incorporating the effects of age-specific

prevention programs w(t, a) on the initiation rate.

Summarizing, we have

p(t,a) = p(a)@(R(t, a)) ¥ (w(t, a)). (2.3)

The function R(t,a) represents the reputation of the drug at time ¢ as
perceived by a non-user of age a. Discussions of reputational feedback some-
times distinguish between the effects of society-wide reputation of the drug,
as portrayed in news media and movies, and an individual reputation, which

explicitly reflects reputational interaction across age groups. We include both
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and denote them by Rsoc(t,a) and Riq(t, a), respectively. We do not imagine
that the societal-wide reputation affects all ages equally. E.g., the young may
be more impressionable than adults. But the effects of the societal-wide rep-
utation are separable into an age-specific but time-invariant vulnerability to
reputation effects and an age-invariant but state (and hence time) dependent
society-wide reputation. The society-wide and individual reputations are as-
sumed to be driven by the weighted averages of the levels of drug (non)-use

relative to some benchmark level, i.e.

Ryoc(t,a) = ma(a) [, mo(a’) (zu — %‘1’)) da’, (2.4)

Rina(t,a) = [ ms(a,a) (Zu — @) da', (2.5)
where the functions and constants have the following meaning;:

my(a) measures the degree of influence the overall reputation of the drug has
on a non-user of age a. Usually it is assumed that it decreases with age,
which means that older people are less influenced by popular opinions

than younger people are.

mo(a’) describes how influential people of age a' are for the overall reputa-
tion of the drug. It should be large for age groups that are opinion
leaders. When it comes to consumption trends, whether of legal or
illegal products, behavior of young people is generally considered to be

more influential.

ms(a, a’) indicates the direct influence of users and non-users of age a’ on a
non-user of age a. This influence depends primarily on the age differ-

ence. Especially for young non-users (who have the highest underlying
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proclivity to initiate into drug use) it is assumed, that persons who are
of the same age or a little bit older are role models, and therefore their
influence is very high. On the other hand, consumption behavior of
persons who are a generation older have less an impact and may ever

evoke a contrarian response.

1, reflects the level of activity that differentiates stigmatized and normative
behavior. If ¢, = 1, then use contributes positively to the reputation
term, regardless of the level of use. If 7, = 0.9 then when drug use
is uncommon (below 10% ), that use is stigmatized and contributes

negatively to the drug’s reputation.

The total reputation is a combination of the both reputation terms which

.0 = [ ) (1~ PD) ar 29

leads to

with

m(a,a’) = timama(a, a’) + (1 — tmq) mi(a)ma(a’), (2.7)

representing the weighted sum of individual and societal reputation, where
iina € [0, 1] measures the influence of the individual reputation and (1 — 4inq)
that of the society-wide reputation.

The function ®(.) transforms the reputation into an effect on initiation.
Presumably it is a non-negative monotonically increasing function with a
floor and ceiling. That is, no matter how bad a drug’s reputation some people
will still initiate, and no matter how good the reputation some people will

still abstain. By definition fi(a) reflects initiation with a neutral reputation
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de0,1] for R— —oc

P(R)=11 for R=0 (2.8)

€ [1,00) for R — o0
meaning that zero reputation has no impact on the initiation, a very nega-
tive reputation reduces the initiation by (1 — d) - 100%, while a very positive
reputation increases the rate by (e — 1) - 100%. Data clearly correlate drug’s
reputation with initiation, but to the best of our knowledge no one has pos-
tulated a specific functional form, so that is deferred until later in this paper.

Following Behrens et al. [1] the function ¥(.) describing the influence of

prevention on initiation is assumed to be of the form
U(w(t,a)) = (1 —c)e =) 4 ¢ (2.9)

where (1 — ¢) € (0,1) measures the maximal proportionate reduction in
initiation and ¢ reflects the efficiency of prevention spending. In essence this
form simply says the more that is spent on prevention, the lower initiation
is, but there are diminishing returns modeled as an exponential decay in
marginal effectiveness.

In order to evaluate the effectiveness of a prevention program it is nec-
essary to define an objective which should be minimized (or maximized). In
our case we have chosen the discounted total social costs as the sum of costs

induced by drug consumption and by prevention expenditures,

w

J = /e_”/(p(a) (k—P(t,a) +w(t, a))dadt — min, (2.10)

w(t,a)
0
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where p(a) represents the age specific average annual costs of someone who
has ever consumed drugs. Of course, other forms of the objective are possible,

which, e.g., incorporate the initiation directly.

2.2 Specification of Functions and Parameter Values

Four functions remain to be specified. They are discussed separately because
they are most likel to vary from drug to drug or from country to country.

Those we choose here are meet to plausible for

e ji(a): Three different basic initiation functions are used. The first
is constant. The second is a step function with a constant positive
initiation below age 25 and zero initiation for older people. The third
matches data for marijuana initiation in the US. It has a sharp peak
around the age of 16 years and is nearly zero outside the interval [10, 25]
(see figure 1). The third is the most realistic, but contrasting its results
with those for the first two stylized initiation functions yields insight

into the qualitative character of the model behavior.
[Figure 1 about here.]

e m(a,a’) describes the overall influence of the users of age a’ on non-users
of age a. For m3(a, a’) a form is used where the influence of people who
are 2 years older is maximal, while it decreases to a negative value for
users, who are more than 12 years older or more than 8 years younger.
With increasing age difference the influence stays negative, but con-

verges to zero. Also with increasing age of the non-user the absolute
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value |ms(a,a’)| decreases. The societal part of the influence, my(a’),
is chosen so that the age range from 20 to 30 years is the age group
with the largest influence on the overall reputation. Following the idea
that younger people are more influenced by media the function m,(a)
is monotonically decreasing. The implication of these assumptions is

depicted in figure 2.
[Figure 2 about here.]

®(.) measures the influence of reputation on the initiation rate. To

satisfy equation (2.8) it is set to

O(R)=d + di arctan(ds x R), (2.11)

2T

where d; (default value: 1) and dy (default value: 1) determine the
decrease and increase of the initiation rate due to the drug’s reputation,

and dj represents the rate of response to changes of the reputation.
[Figure 3 about here.]

p(a): For marijuana, careers of use are shorter than for alcohol or
cigarettes, so it makes sense to iassess an age-specific penalty with
initiation, rather than thinking of a cost per unit time on an ongoing
basis with people who have ever used (and may have Inog since quit).
We do this by setting p(a) equal to a constant, which is equivalent
to assuming that the lifetime costs of drug use decrease exponentially

with the age of initiation. When p(a) is constant, the lifetime costs of
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someone initiating at age 7 are

w

/e_mpda =

T

(e —e ™). (2.12)

RS

Figure 4 compares this social function with estimates of lifetime con-
sumption of marijuana and cocaine [6]) with all three plotted as a
function of the age at marijuana initiation. The essential observation
is that average lifetime consumption declines sharply with age of ini-
tiation, and setting p(a) to a constant generates a cost function that

reflects this decline.
[Figure 4 about here.]

The following further parameters were used in the simulation experiments:

age = 10 - 60 (age range)

Py(a) =1 (initial population distribution)
toc = 0.75 (influence of local reputation)
iy = 0.9 (user — non-user relation for the reputation)

Due to the complex nature of its equations, the model cannot be solved
analytically. Indeed even numerical analysis is non-trivial and requires devel-
opment of some algorithms and properties. This is done in the next section.
Readers uninterested in this mathematics are encouraged to proceed directly
to section 4 which describes the results of simulation experiments on differ-
ent data sets and calculation of optimal prevention programs for a simplified

model.
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3 Numerical and Optimization Methods

3.1 Applying the Method of Lines

Before applying a numerical algorithm to our problem it is necessary to make
some numerical transformations. Using the method of lines (cf. Schiesser [26])
the partial differential equation (2.1) is rewritten as a system of ordinary
differential equations by discretizing the age and substituting the partial
derivatives w.r.t. a by finite approximations. Hence, instead of a continuous
age variable a we have now a finite series of age classes (a;)i=o..n, -

Formally this separation into age classes leads to a compartment model.
Note, however, that here we are describing an algorithmic solution method,
which should be detached from the modeling process. The formulation of
the model uses a continuous age distribution; for numerical reasons it is
necessary to change to a discrete distribution. The advantage of moving
this discretization step from the modeling phase into the solution algorithm
phase is that the number of age classes can be chosen solely with respect to
considerations of computational precision, and without regard to availability
of data or issues of model interpretation.

The usual way to solve these equations would be the method of charac-
teristics which reduces the partial differential equation (PDE) to ordinary
differential equations (DOE) along the family of lines ¢ = a + ¢. This avoids
discretization errors in this first step. But the calculation of integrals with
respect to age — as they occur in the reputation term — requires an inter-
polation between the grid points or a synchronous integration of the ODE

equations with a certain shift depending on the starting point. So in this
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case discretization along the age dimension is preferred.

Equation (2.1) then becomes

P, (t) =k,
’ (3.1)
P, (t) = —Ag[Pu,(t)] — pta; @) Py (t) i =1,...,N,,
where A, denotes an appropriate finite difference operator w.r.t. a.
The initial condition of equation (2.2) leads to initial conditions for the

ODEs:
P,.(0) = Py(a;) i=1,...,N —a. (3.2)

The initiation rate is transformed analogously to individual initiation

rates for each age class a;

tha; (t) = pla, @ (Qa [mai,aj (1 — PJT(Q)D U (Waq(t),- -, Way, (t)), (3.3)

where €, is the approximation function for the integral w.r.t. age. The
Newton-Cotes formula (e.g. trapezoid formula for first-order or the Simpson
formula for third order) is suitable in this case.

It is important to notice that the PDE (2.1) is hyperbolic, which means
that discontinuities are propagated with time along the a-axis. This must be
taken into consideration when choosing an appropriate finite difference oper-
ator. As the propagation is directed towards the positive a-axis, the simplest
operator is the first-order two-point upwind approximation. Suitable oper-
ators of higher order can be derived from the Taylor series. Schiesser [26]
recommends using a combination of upwind and centered approximations in
order to avoid artificial oscillations caused by discontinuous initial or bound-
ary conditions. At the boundaries different approximations are used in order

to avoid points outside the grid.
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3.2 Necessary Optimality Conditions

In this section the maximum principle is applied to two simplified versions
of the optimal control model induced by minimizing the objective (2.10).
Both have modified reputation terms, because existing methods described in
literature are not general enough to cover the full model.

The underlying idea of the maximum principle is to calculate the op-
timum of the objective function under certain conditions coming from the
model equations. So generally speaking a Langrangian function is defined
and maximized by including multipliers, which are called costate or adjoint

variables [11].

Interaction only with individuals of the same age

In this first case we take the control model (2.1)-(2.9) and (2.10), but replace
the interaction between users and non-users of different ages with interaction
between individuals only of the same age. So the integral in (2.6) vanishes

and we have a new initiation rate of the form

p(t, a) = i(a)O(P(t, a)) ¥ (w(t, a)) (3.4)

where O(P(t,a)) represents the reputation of the drug as it is transmitted
by a-year old users and non-users to non-users of the same age.

The following theorem describes the necessary conditions of this simplified
problem. (From now on we write the function arguments only if omitting

them would cause misinterpretation.)

Theorem 1. If w*(t,a) is the optimal control for the dynamic system de-

scribed through (2.1), (2.2), (2.9), (2.10), and (3.4), then there exists func-

17



tions P*(t,a) defined through (2.1), (2.2), (2.9), (3.4) and q*(t,a) defined

through

G +q,=—p+r¢ +a¥(w) (PO (P)+6(P))q"

together with
¢ (tw) =0 for0<t<T
¢(T,a) =0 for0<a<uw,

and

0  for (1—c)eug*P*O(P*) <1
Lin((1 — c)epig* P*O(P*)) otherwise

which hold for (t,a) € [0,T] x [0,w].

The proof of this theorem can be found in appendix A.1.

(3.5)

The terms of the adjoint equation (3.5) can be interpreted in our drug ini-

tiation context. The adjoint variable ¢* (¢, a) can be regarded as the marginal

value at time ¢ of the non-user population P*(t,a) of age a. So the effect of

an additional non-user in the next time step can be split up term for term:

1. ¢; + q; is the change of valuation of a non-user. It is equal to the sum

of the following terms.

2. —p+rq* are the effects due to the social costs (—p) and the discount

rate (rq*).

3. ¥ (w*)O(P*)q* is the effect of the additional initiation ¥ (w*)©(P*)

valued with ¢*, because an additional non-user is also a potential new

user.
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4. pU(w*)O'(P*)P*¢* is the effect of the change of the initiation rate due

to the additional non-user weighed with ¢*.

Society-wide reputation only (ijnq = 0)

Returning back to the original problem of (2.1)-(2.9), (2.10), but setting
tina = 0, means that we consider only the society-wide reputation Rg... So

we have a simplified reputation function:
[ P(t,d
R (t,0) = (@) [ () (1 - P4 ) (39
0
and as initiation rate

p(t, a) = (@) ®(Rsoc(t, a)) ¥ (w(t, a)). (3.9)

Now we need a new method in order to apply the maximum principle, which

is described in the next theorem.

Theorem 2. If w*(t,a) is the optimal control for the dynamic system de-
scribed through (2.1), (2.2), (2.9), (2.10), (3.8), and (3.9), then there exists
functions P*(t,a) and R?,.(t,a) defined through (2.2), (2.9), (3.8), and (3.9)
and q*(t,a) and 0*(t) defined through

G +ds == p+ 1"+ EO(Ri) U (w)g" + 220 (3.10)

w

0(t) :—/ﬂ(a)é'(R:oc(t, a))my(a)¥(w*(t,a))q"(t,a)P*(t,a)da (3.11)

together with
¢ (t,w) =0 for0<t<T
(3.12)
¢ (T,a) =0 for0<a<w,
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and

0  for (1—c)eug*P*®(R:,) <1

w* = (3.13)
LIn((1 — c)epg* P*®(R},,)) otherwise

which hold for (t,a) € [0,T] x [0, w].

The proof of this theorem can be found in appendix A.2.

The interpretation of the necessary conditions is pretty much the same
as in the previous case. The integral term here represents the effects of the
change of the initiation rate, due to the change of the reputation.

To get a numerical approximation of the solution of either form of the
optimal control model, the model equations and the necessary optimality
conditions have to be solved simultaneously. The Method of Lines is applied
to the adjoint system as well, but because of the terminal conditions of the
costate variables this method results in a system of ODEs where one half of
the equations (originating from the model equations) have initial conditions
and the second half (originating from the adjoint equations) have terminal
conditions. So what we now have is a classical boundary value problem
(BVP). Due to the structure of the problem shooting methods which are very
fast and memory-saving cannot be applied. Hence, a collocation method is
used, which essentially discretizes and transforms the system into a nonlinear

equation system which is solved by a Newton method.
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4 Results of Numerical Experiments

4.1 Results with the Uncontrolled Model

We begin by considering what happens in the absence of prevention by study-
ing the uncontrolled dynamics of our model. A central finding is that the
system oscillates, i.e., there are recurring peaks of use. We initialize the
model with everyone being a non-user (Py(a) = 1) so results for the first
peak represent the spread of a new drug (such as marijuana). In the longer
run, the influence of the initial values declines, and the results represent pat-
terns of use for a traditional drug (such as alcohol is today or marijuana may
be in the future).

With an initiation function fi(a) based on US marijuana data the results
show that the system converges either to a limit cycle (as in figure 5), if
changes in reputation lead to large changes in initiation (e.g. d3 = 3), or to
a stable equilibrium (figure 6), if initiation is less responsive to changes in
reputation (e.g. ds = 0.5). In either case the transient behavior includes sharp
variations in prevalence. This implies that for a new drug (all of the illicit
drugs are relatively new), a history of oscillations in use does not necessarily
mean that such oscillations will persist over the long run — as seems to be
the case for alcohol in at least some societies [9, 25]. Interestingly the period
of the limit cycles (about 70 years) is fairly close to the period of oscillations
in alcohol use observed in the US and Australia and the gap between the first
peak in US cocaine and heroin use (early 1900’s) and the second (roughly

1990).
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[Figure 5 about here.]

[Figure 6 about here.]

The behavior of the solution depends not only on the steepness of the
reputation function (see figure 3), but also on the form of the basic initiation
rate [i(a). In order to get cycles it is necessary to have some age groups with
high initiation rates, and others with very low or zero basic initiation. If fi(a)
is constant for the whole age range, then the system always converges to an
equilibrium. But if a simple step function is used (see figure 1), it is again
possible to have cycles (cf. table 1).

The explanation for this lies in the form of the influence function m(a, a').
The negative influence of older users on young non-users can block the initia-
tion of young people if the group of older users is large enough (see figure 2).
However, if baseline initiation rates are high for older non-users, whose be-
havior is less sensitive to reputation effects, the number of users in that birth
cohort will eventually increase, preventing that birth cohort from having a
low number of users as it ages, and cycles will only emerge if some birth
cohorts never have high initiation rates. On the other hand if baseline ini-
tiation rates for older individuals are low, then a cohort whose initiation is
suppressed at younger ages will never use the drug in large numbers and,
hence, will not be able to suppress youthful use by the next generation when
they are older,so a new wave of users is created. If the age range in which
the initiation is high shrinks, the amplitude of the resulting waves gets very
large. Initiation of drug use and, many deviant behaviors, is indeed highly

concentrated within a narrow age range.
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[Table 1 about here.]

4.2 Results with Static Prevention Strategies

The last four lines illustrate the effects of two different (static) strategies for
prevention spending that do not evolve over time. Le., w(t,a) = w(a). The
step strategy spends the same amount on all people between the ages of 10
and 25. The init” strategy matches prevention spending by age to the age
distribution of baseline initiation. The different prevention programs reduce
the amplitude of the oscillations only marginally, but the number of users
as a whole is reduced enough to reduce the total social cost (last column).
The results suggest that prevention is more effective at reducing social costs
when drug use approaches an equilibrium rather than oscillating indefinitely,
and it is more effective when it is matched closely to the age distribution
of baseline initiation. Therefore it is of interest to investigate further the

influence of prevention and how to optimize it, which we do next.

4.3 Optimal Prevention Strategies

We discuss next some numerical results for theorem 2. The results for this
simpler model used in theorem 1 do not differ very significantly from those
presented below, because due to our parameter choice for these experiments
the influence of the reputation term on the model dynamics is low.

To solve the initial-boundary value problem described through the model
equations and the necessary conditions of theorem 2 again the method of

lines is used to transform it into an ordinary boundary value problem by
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discretizing the age. Furthermore, a finite difference method of the NAG
Fortran Library was used to solve those systems of ODEs.
With some exceptions the same parameters as for the simulation experi-

ments described at the beginning of this section are used. Those exceptions

are:
Py(a) = equil. (initial values are set equal to the equilibrium)
iina = 0 (due to the requirements of theorem 2)
d3 =3 (high response to changes of the drug’s reputation)

i(a) = marij./step (two variants of the basic initiation rate, cf. table 1)

Due to the fact that only the social-wide reputation Rgoc(t,a) (img = 0) is
taken into consideration, the uncontrolled system (without any prevention)
converges always to an equilibrium. This equilibrium is chosen as the initial
situation for the controlled model investigations.

The results of the numerical experiments are unspectacular, because the
effectiveness of prevention in absolute terms is low [7, 6], i.e. the parameter
¢ in equation (2.9) is small and ¢ = 0.84, which provokes a maximal possi-
ble reduction of the initiation rate of 16%. Nevertheless the application of
prevention reduces both the number of users and the total social costs. In
the case of the marijuana data, the optimal prevention program reduces the
total social cost by 2% while the number of users can be decreased by about

5% (cf. table 2).

[Table 2 about here.]

24



Because prevention is modeled as affecting behavior immediatly, not with
a lag, the optimal prevention expenditure follows more or less the basic ini-
tiation rate. Since the controlled model converges to an equilibrium, the
optimal control does not vary much over time. Initially prevention spending
changes a little bit in order to move the system from the uncontrolled to the
controlled equilibrium. Then it stabilizes. The apparent large changes be-
ginning around ¢ = 120 are an artifact of the finite planning horizon (¢t = 200
years) and the absence of a salvage value function. They should be ignored.
Indeed, the principal reason for solving the planning problem over such a
large horizon is simply to prevent such artificial edge effects from contami-
nating the results for earlier years which are of genuine interest. The long
time horizon of 200 years is necessary to find the optimal prevention in a sta-
bilized situation. The reputational feedback lengthen the time periods where
initial or terminal conditions are effective (see figures 7 and 8 for further

details).

[Figure 7 about here.]
[Figure 8 about here.]

Figure 8 shows that it is not optimal to target prevention programs to
people over 20 although there is some probability of initiating after that age.
Either this probability is to small or people at that age are not so easily
influenced and therefore the reputational effect of the drug is less potent.

If the optimal control problem is started with initial conditions reflecting
no use at time 0 then the results for relative spending by age are similar —

spend the most on prevention for people in the ages with the highest baseline
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initiation rates — but the total amount of prevention spending over time
oscillates along with levels of use (or non-use). Varying control over time can
be challenging, given bureaucratic inertia, but this may be less problematic
for long-wave variation than higher frequency variation in control efforts. It
has been observed that alcohol control efforts have ebbed and flowed over

time much as alcohol use itself has [10].

5 Conclusions

Introducing age-specific aspects to drug initiation models allows one to de-
velop more realistic models that give insights into the principles of drug
epidemics and their control. Even the simple model presented in this paper
highlights an important contribution of age-structured models: the observed
complex dynamics of cycles of drug use can be simulated using a model that
does not depend on users escalating to a state of heavy or addicted use as in
Behrens et al. [1]. Hence this model is a more plausible candidate for explain-
ing oscillations in use of substances such as marijuana that do not generate
adverse consequences that are as dramatic as for drugs such as cocaine or
heroin.

The behavior of the solution (ongoing cycles or damped oscillations ap-
proaching an equilibrium) depends on the type of age-specific feedback. To
gain similar results with models that do not differentiate by age a larger
number of groups would be necessary.

In particular, the age-specific concept allows one to incorporate an age-

specific reputation effect (feedback from number of users on the initiation
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rate), which depends on how much influence a user of age @’ has on a non-
user of age a, and whether this influence is positive or negative.

Another advantage of age-specificity is the ability to investigate age-
structured strategies for prevention programs and to optimize them. The
results of the control models investigated here are unsurprising. Essentially
they recommend having the age distribution of prevention spending closely
mirror the age distribution of the baseline initiation. To some extent this is
because the control model discussed in this paper considers only an instan-
taneous effect of prevention on the current initiation rate with no persistent
impact. Developing models considering other types of prevention effects is
straightforward. Solving them is a challenge because they demand extensions
of the existing maximum principles, but they represent a potentially fruitful
area for further research and an instance in which a practical managerial
problem may drive the development of basic mathematical and economic
methods.

To analyze age-specific models with richer structures, the next steps are
the formulation of an extended maximum principle for the full reputation
term and the introduction of more age-specific details. For instance, the
efficiency and maximal impact of prevention on initiation (¢ and ¢ in equation
(2.9)) could be regarded as age-specific, so that prevention is more effective
in younger age classes. Likewise one could imagine models that distinguish
different types of users or introduce duration of use as a third parameter,
because some aspects of drug initiation depend on how long an individual has
been in his/her current group. For instance, the probability of an individual

moving from light to heavy use may be related to the duration of his/her
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drug consumption.

In summary, the age-specific model presented in this paper generates
some insights into the dynamics of drug epidemics that models neglecting
age-specificity cannot, and formulating an associated optimal control model
is a step towards increasing the effects of prevention programs by improving
their targeting. Nevertheless, the price paid for including age-specifity was
extreme simplification on other dimensions, so this paper is just an initial
step down the path of age-specific modeling of drug epidemics, and further

works would be valuable.

A Proofs

A.1 Proof for Theorem 1

The maximum principle of theorem 1 can be proved using the methods de-
scribed by Derzko et al. [8] and Muzicant [23], where the optimal control
problem is solved in a more general form.

The present value Hamiltonian for this problem is
H=—-e"p(k—P)—e"w+ \(—P, — u©(P)¥(w)P), (A1)

where A\ denotes the costate variable. The adjoint equation is given by

_0A
oa’

oA

= = ="+ Anl(w) (PO'(P) + ©(P))) (A.2)

Moving the last term 0A/Ja to the left hand side and substituting A =

e " q* yields equation (3.5). For calculating the maximum of the Hamiltonian
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max,, H all terms independent of w(t,a) can be removed. So the remaining
part is
F(w) := —w — pg" P*O(P*)¥(w). (A.3)

The first and second order derivatives are (consider equation (2.9))

F'(w)=—=14 (1 - c)epg* P*O(P*)e™ ", (A4)

F"(w) = — (1 — ¢)e’ug* P*O(P*)e™=". (A.5)

Solving F'(w) = 0 gives the optimal control of (3.7), and verifying that it is

a maximum, we have to distinguish between two different cases:

1. ¢* < 0= F'(w) < 0, implying that w* = 0 is a maximum on the

boundary, or

2. ¢* > 0= F"(w*) <0, implying that w* is a maximum in the interior.

A.2 Proof for Theorem 2

Brokate [4] has solved a more general control problem. So we can use those
results to proof the theorem, but we have to do some transformations, because
Brokate started from a minimizing instead of a maximizing problem.

Using our notation, the adjoint equations for the minimizing problem can

be written as
T

q(t,a) = / —e " p— p® (R, (T,a)) \I/(w*(T, a))(j(T, a) — @é(T)dT,

G¢(T,a) =0, (A.6)

0(6) = - [ @ (Rt 0)) ma(@)¥ (" (,0)) P (1, ), a)do
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Transforming the integral equation for ¢ into a differential equation and
substituting § = —e "'q, we get equations (3.10) and (3.11).

For calculating the optimal control w*(¢,a) it is necessary to maximize

F(w) = —w — pg* P*®(my R,

SoC

) (w). (A7)

The same arguments as in the previous model hold here, too. So the optimal
control of (3.13) maximizes the above function.

Remark. Applying this method of Brokate to the simplified model, where
interaction takes place only between individuals of the same age, only slight

changes of the proof are necessary to get the same results.
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Model parameters Results
aa)' | ds | wt,e)?|| LC*| U60* | MP | aMI| TSC

const. | 0.5 0 0 0.37 0.0077 | 43 | 0.58

const. | 3 0 0 0.34 0.0095 | 47 | 0.55
step | 0.5 0 0 0.49 0.033 | 10 | 1.22
step 3 0 62.5 | 0.36-0.51 | 0.043 | 21 | 1.26

mari. | 0.5 0 0 0.39 0.078 | 16 | 0.96

mari. | 3 0 71.4 | 0.28-0.46 | 0.096 | 16 | 1.00

mari. | 0.5 | step 0 0.38 0.075 | 16 | 0.94

mari. | 3 step 71.4 ] 0.26-0.44 | 0.093 | 16 | 0.98

mari. | 0.5 init 0 0.37 0.071 16 | 0.92

mari. | 3 init 71.4 1 0.26-0.42 | 0.081 | 16 | 0.96

1

Three different forms for the basic initiation rates fi(a) are used (const.
— constant; step — constant between 0 and 25, otherwise 0; mari. —
marijuana initiation; cf. figure 1).

For the prevention w(t,a) we tested three different cases, which are
all independent of ¢ (0 — no prevention; step — constant between 10
to 25, otherwise 0; init — prevention expenditure proportional to basic
initiation rate between 10 and 25). The step and init forms are chosen
to have the same total prevention expenditure.

LC — limit cycle for the last age class (60 yrs.). The value in this
column indicates the duration of the cycles (in years). If the system
converges to an equilibrium, the entry is 0.

U60 — the proportion of people who try the drug at some point in their
life.

MI — the maximal incidence rate.

aMI — age of maximal incidence rate.

TSC — total social costs according to equation (2.10) relative to the
results in the 6th row(marijuana data, d3 = 3, no prevention). The
effectiveness of prevention programs w.r.t. the total social costs depends
on the amount of social costs assumed to be generated by one drug user

per year.

Table 1: Results of different simulation experiments.
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w(t,a) || U60 | MI | aMI | TSC
0 0.29 | 0.057 | 16 | 1.000
step || 0.28 | 0.055 | 16 | 0.993
init || 0.27 [ 0.052 | 16 | 0.983
optimal || 0.27 [ 0.051 | 16 | 0.981

Table 2: Comparison of results using optimal prevention and heuristic or
no prevention. (For a description of the table entries see the footnotes of
table 1)
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