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Abstract

This paper presents an empirical evaluation of the role of
context in a contemporary, challenging object detection task
– the PASCAL VOC 2008. Previous experiments with con-
text have mostly been done on home-grown datasets, often
with non-standard baselines, making it difficult to isolate
the contribution of contextual information. In this work,
we present our analysis on a standard dataset, using top-
performing local appearance detectors as baseline. We
evaluate several different sources of context and ways to
utilize it. While we employ many contextual cues that have
been used before, we also propose a few novel ones includ-
ing the use of geographic context and a new approach for
using object spatial support.

1. Introduction
There is a broad agreement in the community about the

valuable role that context plays in any image understand-
ing task. Numerous psychophysics studies (see [29] for an
overview) have shown the importance of context for hu-
man object recognition. Several recent computer vision
approaches have demonstrated that the use of context im-
proves recognition performance [4, 11, 14, 17, 24, 26, 32,
35, 39, 41]. Yet, in practice, when a high-performance
recognition system is required (e.g., for commercial deploy-
ment or to enter a recognition competition), people almost
always revert to the tried-and-true local sliding window ap-
proaches [5, 7].

Why such a disconnect? We believe there are two rea-
sons. First, in all the previous work on context, every
approach reported results only on its own, home-grown
dataset. Because of this lack of standardization, it becomes
very difficult to compare the different approaches to each
other, and to the standard non-contextual baseline meth-
ods. Second, there is very little agreement in the literature
about what constitutes “context”, with poor differentiation
between very simple types of context (e.g., using a slightly
larger local window) and ones that are much more involved.
As a result, it is unclear which, if any, of the contextual ap-
proaches might be worthwhile for any given task, and how
much of an increase in performance are they likely to pro-

Figure 1. On the challenging PASCAL VOC dataset, even the best local-
window detectors [7] often have problems with false positives, poor local-
ization, and missed detections (left). In this paper, we enhance these detec-
tors using contextual information (right). Only detections above 0.5 preci-
sion are shown. (Red Dotted: Detector, Green Solid: Detector+Context)

duce.
In this work, our goal is to bring context into the main-

stream of object detection research by providing an empir-
ical study of the different types of contextual information
on a standard, highly regarded test set. This provides us a
basis for assessing the inherent limitations of the existing
paradigms and also the specific problems that remain un-
solved. Our main contributions are as follows: 1) Objective
evaluation of context in a standardized setting. We have
chosen to participate in the PASCAL VOC Detection Chal-
lenge [6] – by far the most difficult, of all object detection
datasets. As our baseline local detector, we choose from
amongst the top-performing detectors in this challenge. Our
results demonstrate that carefully used contextual cues can
not only make a very good local detector perform even bet-
ter but also change the typical error patterns of the local
detector to more meaningful and reasonable errors. 2) Eval-
uation of different types of context. In this study, we look at
several sources of contextual information, as well as differ-
ent ways of using this information to improve detection per-
formance. 3) Novel algorithms. While we employ several
contextual cues that have been used before, we also propose
a few new approaches, including the use of geographic con-
text and a new approach for using object spatial support.

1.1. Sources of Context
While the term “context” is frequently used in com-

puter vision, it lacks a clear definition. It is vaguely un-
derstood as “any and all information that may influence the
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way a scene and the objects within it are perceived” [38].
Many different sources of context have been discussed in
the literature [2, 29, 38] and others are proposed here (see
Table 1 for summary). The most common is what we
broadly term local pixel context, which captures the basic
notion that image pixels/patches around the region of inter-
est carry useful information. The classic trick of increasing
the size of a scanning-window detector to include surround-
ing pixels [5, 41] is one simple application, as are more
involved MRF/CRF-based methods, such as [4, 20, 35].
Image segmentation, object boundary extraction, and var-
ious object shape/contour models are also examples of lo-
cal pixel context, as they use the object’s surroundings to
define its shape/boundary [31]. 2D scene gist uses global
statistics of an image to capture the “gist” of the visual ex-
perience [28, 32]. Geometric context aims to capture the
coarse 3D geometric structure of a scene, or the “surface
layout” [16], which can be used to reason about support-
ing surfaces [17], occlusions [15], contact points, etc. Se-
mantic context might indicate the kind of event, activity,
or other scene category being depicted [1, 22, 28]. It also
may indicate the presence and location (spatial context) of
other objects and materials [10, 11, 12, 37]. Photogrammet-
ric context describes various aspects of the image captur-
ing process, such as intrinsic camera parameters i.e., focal
length, lens distortion, radiometric response [24], as well
as extrinsic i.e., camera height and orientation [17]. Illu-
mination context captures various parameters of scene illu-
mination, such as sun direction [21], cloud cover, shadow
contrast, whereas weather context would describe meteoro-
logical conditions such as current/recent precipitation, wind
speed/direction, temperature, season as well as conditions
of fog and haze [27]. Geographic context might indicate
the actual location of the image (e.g. GPS), or a more
generic terrain type (e.g., tundra, dessert, ocean), land use
category (e.g. urban, agricultural), elevation, population
density, etc. [13]. Temporal context would contain tem-
porally proximal information, such as time of capture [9],
nearby frames of a video (optical flow), images captured
right before/after the given image, or video data from sim-
ilar scenes [23]. Finally, there is what we broadly term the
cultural context, a largely neglected aspect of context mod-
eling. Its role is to utilize the multitude of biases embedded
in how we take pictures (framing [36], focus, subject mat-
ter), how we select datasets [30], how we gravitate towards
visual clichés [34], and even how we name our children [8]!

1.2. Use of Context for Object Detection

While in the previous section we cataloged the many
possible sources of context that could be available to a vi-
sion system, what we are primarily interested in this paper
is how context can be used for the task of object detection.
Let us now consider the different aspects of an object detec-
tion architecture to see how contextual information could be
useful in each.

Local Pixel Context window surround, image neighbor-
hoods, object boundary/shape

2D Scene Gist Context global image statistics
3D Geometric Context 3D scene layout, support sur-

face, surface orientations, occlu-
sions, contact points, etc.

Semantic Context event/activity depicted, scene cate-
gory, objects present in the scene
and their spatial extents, keywords

Photogrammetric Context camera height, orientation, focal
length, lens distortion, radiometric
response function

Illumination Context sun direction, sky color, cloud cover,
shadow contrast, etc

Weather Context current/recent precipitation, wind
speed/direction, temperature, sea-
son, etc.

Geographic Context GPS location, terrain type, land use
category, elevation, population den-
sity, etc.

Temporal Context nearby frames (if video), temporally
proximal images, videos of similar
scenes, time of capture

Cultural Context photographer bias, dataset selection
bias, visual clichés, etc

Table 1. Taxonomy of sources of contextual information.

Object Presence. Many objects have typical environ-
ments, such as toasters in kitchens or moose in woodlands.
The appearance of the scene (gist context), its layout (ge-
ometric context), scene or event category/the presence of
other objects (semantic context), previous scenes (tempo-
ral context) can all help in predicting the presence of an
object. Moreover, some objects tend to appear in certain
parts of the world (geographic context), and some objects
are more likely to be photographed than others (cultural
context). Object presence is roughly equivalent to the prob-
ability constraint proposed by Biederman [2].

Object Appearance. The color, brightness, and shading
of an object will depend on scene illumination (illumination
context) and weather (weather context). Camera parameters
such as exposure and focal length (photogrammetric con-
text) can help explain intensity and perspective effects.

Object Location. 3D physical constraints, such as ob-
jects requiring a ground plane or some other support sur-
face, help to determine likely locations of objects in the
scene (geometric context). Moreover, some objects are
likely to appear near others, such as people near other peo-
ple, or in particular relations to objects or materials, such
as cars on the road, squirrels in trees, grass below sky,
etc (semantic context). Presence of an object at a partic-
ular location in nearby scenes can help predict its location
in a future scene (temporal context). Photographer biases
(cultural context) often provide useful information, such as
an object being centered in the image due to photographer
framing and its bottom position to be towards the bottom
of the image due to roughly level imaging. Object location
is roughly equivalent to Biederman’s support and location



constraints [2].
Object Size. Given object presence and location, its size

in the image can be estimated. This requires knowing either
camera orientation and height above the supporting surface
(photogrammetric context), or relative sizes of other known
objects in the scene (semantic context) and their geometric
relationships (geometric context). Object size is roughly
equivalent to Biederman’s size constraint [2].

Object Spatial Support. Given object presence, loca-
tion and size in the image, its spatial support can be esti-
mated in order to: 1) better localize a bounding box; 2) per-
form more accurate non-max suppression and multiple ob-
ject separation (by using segment overlap instead of bound-
ing box overlap); 3) estimate a more precise object shape
and appearance model. Estimating the spatial support of an
object can be assisted by a number of contextual cues. Lo-
cal image evidence, such as contours/edges, areas of similar
color or texture, etc (local pixel context), occlusion bound-
aries and surface orientation discontinuities (geometric con-
text), as well as class-specific shape prior (semantic con-
text) can all provide valuable information. This use of con-
text is roughly equivalent to Biederman’s interposition con-
straint [2].

2. Approach
In the previous section, we generated a full wish list of

contextual cues and their uses that can potentially benefit
object detection. In designing our approach, we picked the
context cues which could not only be reliably learned given
the available data, but also fit the “plug-and-play” philoso-
phy of taking an off-the-shelf local detector and adding con-
textual information to it. Therefore, in this work, we have
used local pixel context, 2D scene gist, 3D geometric, se-
mantic, geographic, photogrammetric and, to a limited ex-
tent cultural context cues, while finding that we did not have
good training data for the others. Based on these available
context sources, we have implemented object presence, lo-
cation, size, and spatial support uses of context.

2.1. Local Appearance Detectors

To fairly evaluate the role of context, we need to start
with a good local detector. Amongst the top-performing
PASCAL [6] detectors, we use the UoCTTI [7] detector
which was the only publicly available one. Qualitatively,
we have observed that the detector achieves substantially
better results than that suggested by the raw performance
numbers. This is because, although the detector does a fair
job in detecting the presence of an object correctly, it often
makes mistakes in localizing it, partially due to the fixed as-
pect ratio of the bounding box and multiple firings on the
same object. Thus, some false positives are due to mistakes
in the appearance model but others are due to poor localiza-
tion. We attempt to overcome these problems by augment-
ing the detector with contextual information.

Figure 2. Geographic and Semantic (keyword) context: Geographic prop-
erties and keywords associated with the scene can help predict object pres-
ence in an image. The base detector finds a dining table in this input image
(see figure 6), while the context indicates that a dining table is unlikely.

In this work, we use the detector trained on the VOC’07
trainval set, and use the VOC’08 trainval set for learning
the context classifiers (described below). This ensures that
the baseline detector and context are trained on different
datasets to avoid overfitting. To help ensure that few true
detections are missed by the detector, we reduce the thresh-
old for detection such that there are at least 1000 detections
per image per object .

2.2. Object Presence

To predict the likelihood of observing an object o given
the image I i.e., P (o|I), we use the 2D scene gist, 3D ge-
ometric, semantic and geographic contexts. The 2D scene
gist of an image is computed in the standard way as de-
scribed in [28]. The geometric context for an image is com-
puted as a set of seven geometric class (ground, left, right,
center, sky, solid, porous) confidence maps as described
in [16]. These confidence maps are re-sized to 12×12 grids
and vectorized to serve as a coarse “geometric gist” de-
scriptor. We use logistic regression [19] to train two sep-
arate object presence classifiers based on each descriptor.
The use of these descriptors for scene classification has be-
come fairly standard in literature and has shown good re-
sults. However, our use of geographic and semantic infor-
mation is a novel contribution.

For the geographic context, we follow the approach
of [13], estimating geographic properties for a novel image
by finding matching scenes within a database of approxi-
mately 6 million geotagged Flickr photographs (excluding
images that overlap with the VOC dataset and photogra-
phers). We compute 15 geographic properties such as land
cover probability (e.g., ‘forest’, ‘cropland’, ‘barren’, or ‘sa-
vanna’), vegetation density, light pollution, and elevation
gradient magnitude. We train a logistic regression classifier
based on these geographic properties. Object class occur-
rence is correlated with geography (e.g., ‘boat’ is frequently



Location Size
Figure 3. Object properties such as bottom-center position and height are
used for modeling object location (see section 2.3) and object size (see
section 2.4) respectively.

found in water scenes, ‘person’ is more likely in high popu-
lation density scenes) but the relationship is often weak. For
instance, the ten indoor object classes in the VOC dataset
cannot be well distinguished by geography.

For semantic context, we use the keywords associated
with matching scenes in the im2gps dataset [13] to predict
object occurrence. The 500 most popular words appearing
in Flickr tags and titles were manually divided into cate-
gories corresponding to the 20 VOC classes and 30 addi-
tional semantic categories. For instance, ‘bottle’, ‘beer’,
and ‘wine’ all fall into one category, while ‘church’, ‘cathe-
dral’, and ‘temple’ fall into another category. For a novel
image we build a histogram of the keyword categories that
appear among the 80 nearest neighbor scenes. We use lo-
gistic regression to predict object class based on this his-
togram. Keywords from Internet images are very noisy and
sparse (the im2gps database averages just one relevant key-
word per image), but they are quite discriminative when
they do occur. All the above classifiers are trained on the
VOC’08 trainset.

2.3. Object Location
The goal is to predict where the object(s) are likely to

appear in an image given that there is at least one object oc-
curring in the image i.e., P (x|o, I). To train this location
predictor, we divide the image into n×n grids (n = 5) and
train for each grid, two separate logistic regression classi-
fiers [19], one each for the whole image scene gist and the
whole image 3D geometric context descriptors as described
earlier. The classifiers are trained using the VOC’08 train-
set. A grid is labeled as a positive example if the bottom
mid-point (xleft+xright

2 , ybottom) of a bounding box falls
within it (See figure 3). We then combine the predictions of
the above two classifiers using another logistic regression
classifier trained on the VOC’08 validation set. For some
classes, a few grid cells end up having no (or very few) pos-
itive examples (e.g., dining tables never occur in the (1,1)
grid). No classifiers were trained for such grid cells and the
confidence of finding an object in this location was set to a
minimum value while testing.

2.4. Object Size
The idea here is to predict the size (as log pixel height)

of an object, given its location in the image i.e., P (h|x, o, I)

as illustrated in figure 3. This is learned using three types
of contextual cues: 1) photogrammetric context modeled
in terms of viewpoint estimates [17] (relative y-value) and
the object depth [15] (value at the bottom mid-point of an
object bounding box); 2) 2D scene gist; and 3) 3D geo-
metric contexts (the latter two modeled as whole image de-
scriptors). We train a separate logistic regression classifier
on the VOC’08 trainset for each of the above feature de-
scriptors. This regression task is reformulated as a series of
classification tasks [26], where we first cluster object sizes
(using K-means) into five clusters s1, s2, s3, s4, s5 and then
train a separate classifier for each size (i.e., size < s2, size
< s3, size < s4, size < s5). The object sizes for training
classifiers are calculated using the ground-truth annotations
provided in the VOC’08 dataset. The predictions from in-
dividual classifiers are combined using another logistic re-
gression classifier trained on the VOC’08 validation set. At
testing, we calculate P (size = k) as P (size < k+1)∗(1−
P (size < k)), with

∑
k P (size = k) = 1 and compute the

expected object size as
∑

k P (size = k) ∗ center(k).

2.5. Combining Contexts

The task here is to combine the object detection results
with the various context uses, so as to rescore those de-
tection hypotheses that do not agree with the object pres-
ence, location and size context predictions to a lower value.
Detections that occur at unusual poses should have signifi-
cantly high score from the base detector for them to be se-
lected in this scheme [26]. First we retrieve the top 100
detections (after non-max suppression) per image for all the
training images. For each detection, we retrieve: 1) ob-
ject presence estimates in terms of the scene gist, geometric
context, geographic and semantic context classifier confi-
dences; 2) object location estimates in terms of the confi-
dence of the grid in which the bottom center of the bounding
box occurs and also the max confidence in its neighborhood;
3) object size estimates in terms of the predicted height and
the negative absolute difference between the bounding box
height and the predicted height. We train a logistic regres-
sion [19] classifier using the above features on the VOC’08
validation set. We consider a detection hypothesis to be pos-
itive if there is at least 50% overlap with a true detection. If
any of the above context features are assigned a negative
weight during the training process, we retrain the classifier
again after setting those features to zero. While testing, we
retrieve the top 500 detections for every image (obtained us-
ing [7]) and rescore these detections using the above classi-
fier. These rescored detections are used by the object spatial
support context described in Section 2.6.

In all cases, we evaluate different classifiers for modeling
the various contexts and also for combining them - kNN,
SVM (linear and RBF) [18], logistic regression (L1 and L2).
We found L1-regularized logistic regression to perform at
least as well as other.



Figure 4. Modeling Object Support (see section 2.6).

2.6. Object Spatial Support

The task here is to compute the object’s spatial support
given an (often poorly localized) candidate detection and
its confidence. This is a much easier problem than the gen-
eral segmentation problem because the type of object and
its rough location in the image is known. We implement a
simple segmentation approach based on graph cuts.

Unary Potential: Our unary features model the object
class appearance, a position/shape prior, and the object in-
stance appearance. For class appearance, we compute K-
means clustered L*a*b* color (K=128) and texton [40]
(K=256) histograms, geometric context confidences [16]
and the probability of background confidences (trained us-
ing [16] on LabelMe [33] examples), quantized to ten val-
ues. The features are the class-conditional log-likelihood
ratios i.e., P(feature | object)/P(feature | background) given
the quantized value, as estimated on the segmentation
ground-truth in the VOC’08 trainset. The position/shape
prior is computed as the log-likelihood ratio for each pixel
given its location with respect to the location and scale
of the bounding box. The object instance appearance is
modeled by taking the log ratio of the histograms com-
puted within and outside the bounding box. Altogether, this
gives us thirteen features (class appearance: color, texture,
seven geometric classes, probability of background; loca-
tion/shape prior; instance appearance: color, texture), plus
a prior.

Pairwise Potential: The pairwise potentials are mod-
eled using probability of boundary (Pb) [25] and probabil-
ity of occlusion [15] confidences. They are set to be the
negative log-likelihood of boundary, and separate weights
are learned for horizontal, vertical, and diagonal neighbors
(eight-connected neighborhood).

Learning: Unary and pairwise potentials are learned
together using pseudo-likelihood, maximizing the likeli-
hood of a pixel given the ground truth values of its im-
mediate neighbors. After learning the potentials, we make
small adjustments to them (specifically the unary prior and
shape/position) for each object to give good results on the
validation set (as the automatically learned prior weight
tends to lead to under-segmentation).

Inference: Each candidate detection is segmented using
graph cuts [3], after resizing the image so that the object

length is 100 pixels. (The resizing is important to achieve
good segmentations for objects of different sizes). For
computational reasons, only post-context detections that are
above a threshold (corresponding to 0.025 precision in val-
idation) are processed. See Figure 4 for an illustration.

After segmenting an object, we represent its appearance
with histograms of K-means quantized color, texture and
HOG features [5, 7] (K=128, 256, 1000 respectively), and
a measure of segmentation quality (defined as the differ-
ence between the energy of the graph cut solution and the
energy of all pixels labeled as background, normalized by
the number of object pixels). A classifier on these segment-
based features is trained using a linear SVM [18] for each
object class. When testing, we reclassify the object based
on the features computed within the segment and assign the
final detection score as a linear combination of the original
score and this segment-based score. This is similar to the
segmentation-based verification strategy of Ramanan [31],
who instead uses the pixels of the segmentation mask as
features.

Beyond rescoring, we also use the computed spatial sup-
port to improve non-maximum suppression and localiza-
tion. If two candidate detections yield segmentations with
pixel overlap (intersection over union) of at least 0.5, the
candidate with the lower score is removed. A new bounding
box is estimated by taking a weighted average of the origi-
nal bounding box and a tight fitting box around the segment.
The box is then adjusted by a fixed percentage of width or
height to account for bias (e.g., consistently undersegment-
ing the legs of chairs). Parameters are learned on the valida-
tion set. For few classes (sofa, bicycles), the spatial support
cannot be reliably estimated, resulting in a decrease in per-
formance. To avoid this, a per-class parameter is learned on
the validation set to decide if the rescoring/improved local-
ization step is applied during the testing phase.

3. Experimental Results and Analysis
The PASCAL 2008 dataset [6] consists of roughly

10,000 images (50% test, 25% train, 25% validation) con-
taining more than 20,000 annotated objects from 20 classes.
The images span the full range of consumer photographs,
including indoor and outdoor scenes, close-ups and land-
scapes, and strange viewpoints. The dataset is extremely
challenging due to the wide variety of object appearances
and poses and the high frequency of major occlusions.
Per-Class Detection Results. Table 2 displays the detec-
tion results obtained on the VOC’08 test set with and with-
out using context. The results are reported using the average
precision (A.P.) metric, which is the standard mode of eval-
uation in the PASCAL VOC challenge. Our experiments
show the importance of reasoning about an object within
the context of the scene, as we are able to boost the aver-
age precision of the original UoCTTI’07 detector from 18.2
to 22.0. The table includes a comparison with the recently
released UoCTTI’08 to demonstrate the generalizability of



Objects UoCTTI +Context UoCTTI +Context

2007 +Scene
+Scene
+Support 2008 +Scene

+Scene
+Support

plane 18.8 21.3 34.5 28.7 26.8 32.7
bike 33.5 31.7 32.7 44.6 42.9 42.9
bird 9.3 9.9 12.3 0.5 5.0 5.0
boat 10.4 10.6 11.0 12.6 13.1 13.1
bottle 22.9 23.2 22.4 28.8 27.8 27.8
bus 19.2 17.7 18.5 22.7 23.9 23.9
car 25.1 26.0 27.8 31.9 31.6 31.6
cat 6.7 15.8 21.6 14.4 18.1 19.8
chair 13.3 14.1 8.8 15.9 17.4 17.4
cow 16.6 14.7 14.1 14.4 12.3 12.3
dtable 15.0 18.4 15.2 12.0 21.4 21.4
dog 6.3 7.9 17.8 11.4 7.7 9.4
horse 24.6 26.6 27.4 34.3 35.7 35.7
mbike 32.7 34.0 40.9 37.7 37.1 37.1
person 26.4 28.7 37.4 36.6 39.5 39.5
pplant 11.2 10.8 11.2 8.6 12.6 12.6
sheep 10.9 12.0 7.0 12.1 13.5 13.2
sofa 11.6 13.7 13.5 15.0 15.8 15.8
train 16.0 17.6 28.2 30.1 31.4 32.2
tv 32.9 33.3 38.5 34.7 35.2 35.2
Mean 18.2 19.4 22.0 22.4 23.4 23.9

Table 2. Detection Results on PASCAL VOC 2008 testset. The first col-
umn is the average precision (A.P.) obtained using the base detector. The
second and third column show the A.P. obtained upon the addition of the
scene context (object presence, location and size) and the spatial support
context. Context aids in improving the detection results for many object
classes.

our results. We also display the relative improvement ob-
tained by the scene context (presence, location and size),
and the spatial support context. We observe that both pieces
of information contribute towards the increase in perfor-
mance (however they cannot be compared on an absolute
scale as the output of one process is the input to the other).
Notice that for many classes there is a large improvement
(e.g., airplane, cat, person, and train), while for some (e.g.,
bicycles, cows) there is a small drop in performance indi-
cating that the benefit of context varies per class. It must be
noted that our numbers cannot be directly compared to the
official PASCAL VOC 2008 challenge rankings as our ap-
proach involves the usage of external datasets (VOC 2007
and Flickr images). Comparing the results obtained using
the two different detectors reveals similar performance by
our contextual information in either case. Therefore the rest
of our analysis is conducted using the UoCTTI’07 detector
on the VOC’08 validation set.
Change in Confusion matrices. Figure 5 displays the
change in the types of mistakes that are made after adding
contextual cues. The confusion matrix is computed as usual,
except that we include three new classes: 1) ‘extraDet’ ad-
dresses the scenario in which the overlap of a box is greater
than 0.5 on an already detected object (extra detection); 2)
‘poorLoc’ includes scenarios in which overlap is between
0.25 and 0.5 (poor localization); and 3) ‘Bgnd’ denotes the
case when the overlap is under 0.25 (fired on the back-
ground). Observe that there are much fewer extra detections
(better non-max suppression), fewer localization errors, and

Type Mean A.P. Most Improved Least Improvedw/o w/
Small 6.7 12.0 planes (5.4 to 24.8) pplant (10.3 to 5.9)
Large 9.3 9.7 dtable (4.5 to 9.3) sheep (5.4 to 0.7)
Occluded 4.8 7.5 cat (3.1 to 13.8) mbike (18.7 to 16.5)
Non-
Occluded 10.4 11.5 dog (2.5 to 7.4) chair (12.5 to 5.1)
Difficult 0.2 0.3 dtable (0.3 to 2.9) chair (2.2 to 0.1)

Table 3. Average Precision w.r.t. two object types, Size and Occlusion.
For each type, we display the mean A.P. across all object instances without
(‘w/o’) and with (‘w/’) context along with most/least improved classes.
Context particularly helps when objects have impoverished appearance.

fewer detections on background upon adding contextual in-
formation. Further the remaining mistakes that occur after
adding context are more reasonable where the confusions
are between similar classes such as bicycles getting con-
fused with motorbikes, buses with cars, cows with horses
and sheep etc.
Analysis of sources and uses of context. We measured
the influence of each of the individual sources of context
for the tasks of object presence, location and size estima-
tion. For object presence (“Does the object appear in the
image?”), the mean A.P. across 20 classes using individ-
ual cues was as follows: Semantic (25.6%), Gist (23.9%),
Geometric (21.5%) and Geographic (15.1%), while using
all the cues gave 31.2%. For object location (“In which
of the 25 grids is the bottom of the object located?”), the
mean A.P. across 20 classes was: Gist (3%), and Geo-
metric (2.5%), while using both cues gave 6.5%. Finally
for object size estimation, the average prediction error i.e.,P

|log(trueHeight/predictedHeight)|
#instances across 20 classes was:

Photogrammetric (1.08), Gist (1.16) and Geometric (1.18)
while using all the cues gave an error of 1.086. The baseline
error of simply predicting the mean object height is 1.22.

To analyze the importance of the uses of context i.e., ob-
ject presence, location and size, we run our detection ex-
periments in a leave-one-out methodology. The mean A.P.
across 20 classes for each of the case is as follows: 1) ex-
cluding object presence - 19.8%; 2) excluding object loca-
tion - 20.2%, 3) excluding object size - 19.2%, 4) excluding
all the three (i.e., simply running the base detector) - 18.5%,
and 5) including all the three - 20.5%. Thus we observe that
the object size context is the strongest, while object location
is our weakest context use.
Change in Accuracies with respect to size and occlusion.
We also analyzed the change in accuracies as a function of
two different object characteristics/types, namely occlusion
and size (Table 3). The type ‘occluded’, ‘non-occluded’
and ‘difficult’ are as defined in the PASCAL annotations.
The type ‘small’/‘large’ refers to the object instances that
were lesser/greater than the median object area in the im-
age. Context is particularly helpful when the objects have
impoverished appearance i.e., when they are small and oc-
cluded in the image.

We also analyzed at the results by segregating objects
into man-made vs. natural object categories. In this case,



(a) (b) (c)

Figure 5. Confusion matrices (a) Without Context (b) With Context (c) Change in confusions i.e., (b-a) quantized into three values - white indicates positive
change, black indicates negative change, and gray indicates negligible change (within +/- 0.05) . Observe that many fewer extra detections, localization
errors, and background detections occur upon the addition of contextual information. Further, the remaining errors made are more reasonable – cows getting
confused with horses, cats confused with dogs etc.

Bird Car Chair TV
Figure 7. Images in which addition of context had the largest decrease in
the top detection confidence. (Red Dotted: Detector, Green Solid: Detec-
tor+Context.) Performance is hurt mostly in cases when the objects occur
outside their typical context.

we observed that for natural objects (i.e. bird, cat, cow, dog,
horse, person, sheep) the improvement in A.P. is 2.1 (from
14.4 to 16.5), while for man-made objects (i.e. aeroplane,
bicycle, boat, bottle, bus, car, chair, diningtable, motorbike,
pottedplant, sofa, train, tvmonitor), it is 0.8 (from 20.2 to
21.0).
Qualitative Analysis. Figure 6 displays some of the qual-
itative results showing the largest increases and decreases
in detection confidences after adding contextual informa-
tion. Although context almost always helps in improving
the detector performance, there are certain scenarios where
it hurts. Figure 7 displays some cases where the addition
of context leads to some of the original highly confident
detections being discarded. Finally in Figure 8, we dis-
play the mistakes/errors that still occur despite augment-
ing a top-performing detector with several contextual cues.
Most errors are amongst classes that share similar contexts,
e.g., cats confused with dogs, airplanes confused with birds
etc. Such confusions are subtle and present a challenge to
the existing detection algorithms. We believe a more object
specific appearance model would be required to avoid such
errors.

4. Discussion
In this paper, we have presented an empirical analy-

sis of the role of context for the task of object detection.

Airplane Bus Cat Bottle
Figure 8. Mistakes/Errors made despite augmenting a top-performing ob-
ject detector with several contextual cues. Such scenarios present a chal-
lenge to existing detection algorithms.

By achieving substantial gains on the challenging PASCAL
VOC dataset, we have reaffirmed that contextual reasoning
is a critical piece of the object recognition puzzle. Con-
text not only reduces the overall detection errors, but, more
importantly, the remaining errors made by the detector are
more reasonable. Many sources of context provide a large
benefit for recognizing a small subset of objects, yielding
a modest average improvement. This highlights the impor-
tance of evaluation on many object types as well as the need
to include many types of contexts if good performance is
desired for a wide range of objects.

Several issues remain to be explored for making con-
text an integral part of object detectors. In this work, we
have performed simple implementations of different context
sources and uses. Each of these could be improved with
further study. Further we have used a naive combination
scheme to combine the various contexts. A more sophisti-
cated scheme would offer better gains. Finally, an iterative
feedback-based framework connecting the detector and the
various contexts together is worth exploring.
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Largest increase in confidence Largest decrease in confidence
Figure 6. Images for the bike, diningtable, and train classes for which the best detections had the largest increase and decrease in confidence with the
addition of context. In these cases the local appearance and global context disagree most strongly. When the addition of context increases confidence (left)
it is because a detection is in a reasonable setting for the object class, even if the local appearance does not match well (motorbikes on top row share context
with bicycles). When the addition of context decreases confidence (right) it is typically pruning away spurious detections that had high confidence scores
from the local detector. (Red Dotted: Detector, Green Solid: Detector+context)
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