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I. Introduction

During the past several years much progress has been made
toward the goal of establishing a general theory of continuum
thermodynamics. Coleman and Noll [1963] have developed a rational
procedure for Systematically establishing those restrictions
placed on constitutive relations by the Second Law of Thermo-
dynamics. This procedure has since been applied to various
constitutive assumptions,l and the results, for surprisingly large
classes of materials, seem to be in complete accord with physical

experience., As their starting point these studies take the First

Law of Thermodynamics in the tradtional form2
g? j edv = y g-np da + X rdv,
Q. o a

and the Second Law in the form of the inequality

d

y q-n ( r
EE'SdVZ'fa—_dA+ —édV,

G

which is due to Clausius, Duhem, Truesdell, and Toupin3 and usually
referred to as the Clausius-Duhem inequality. Here A, with
boundary dQ, is an arbitrary smooth subregion of the body; e

is the internal energy density, s the entropy density, & the
temperature, g the heat conduction vector,and r the radiation

density. The success of the above mentioned work has established

1For applications to simple materials see Coleman and Noll [1963],
Coleman and Mizel [1963, 1964], Coleman [1964-1,2], Gurtin
[1965-1,2; 1967], Gurtin and Williams [1966-1], Wang and Bowen
[1966], and Coleman and Gurtin [1967-1,2].

2Actually, the above studies include mechanical effects which, for
~ convenience, we neglect. Thus,here and in what follows we assume
that the body is rigid and stationary.

3This postulate, for the case in which g =0 and r =0, is due
to Clausius [1854, 1862, 1865]; the surface integral was added by
Duhem [1901] and the volume integral by Truesdell and Toupin [1960].




that ﬁhese are appropriate starting assumptions for the study

of constitutive relations, at least for those classes of materials
to which they have been applied. Because of this it becomes
important to develop an axiomatic structure for continuum thermo-
dynamics in which the relation of the above laws to the general
axioms of thermodynamics is brought out. In this work we present
a complete set of axioms,1 based upon physically acceptable gross
forms of the laws of thermodynamics, which yield appropriate forms
of these laws for continuum physics. In particular we give
assumptions under which these forms reduce to the classical ones
above;2 Of special interest is the fact that the existence of

temperature is seen to be a consequence of the requirement

that the entropy flux into one body from another must vanish
whenever the two bodies do not exchange heat.

We attempt to maintain throughout the complete rigour which
we feel is necessary in any work of this sort., We make no hidden
assumptions of smoothness or of any other property; the assump-
tions necessary for any result, beyond those contained in the
axioms, are always stated as hypotheses for the theorem. It
also is to be emphasized that nowhere in this work do we find it
necessary to consider quasi-static processes, adiabatic processes,
reversibility, or any such classical notions. We need to con-
sider only a single body in a single !''process!'' to introduce
all of the necessary concepts and to demonstrate all of our results.

Aside from the axioms which state the First and Second

Laws of Thermodynamics, the basic axioms of the work are those

1 . . . .
For an axiomatic treatment of classical thermodynamics see Arens

[1963] and Giles [1964].

2Roughly speaking, the assumptions are that there be no internal
radiation and that the flow of entropy across any surface be
balanced.
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typical of continuﬁm physics; first that any physical law postulated
aé true for a.body be true for any !''body-like!'! part within the
body, and secoﬁd that all physical quantities defined on such
subbodies be extendable to measures.

The plan of the work is as follows: In Section 2 we consider
the technical question of which sets contained within a given
body are to be considered for the theory. We introduce the
notions of internal energy and heat flux in Section 3 and state
the First Law in Section 4. Consequences of the First Law are
then .found and the classical reduced form of this law deduced.

In Section 5 we introduce entropy and entropy flux in a manner
paralleling the earlier treatment of energy, and in Section 6 we
lay down our version of the Second Law. This is then shown to
imply the existence of temperature and to lead to.a reduction

of the expressions for the entropy flux and, in Section 7, to
certain heat conduction inequalities. 1In Section 8, we consider
assumptions which are sufficient to reduce the Second Law to

- the Clausius-Duhem inequality.

Many of the results in Section 4 are analogs of, and based
upon, Noll's treatment of continuum mechanics;l indeed the
realization that measure theory is an appropriate vehicle for
the statement of the fundamental axioms of continuum physics is
due to Noll.

Although we here treat only the case of non-deforming bodies
and hence ignore mechanical effects, it is clear that all of our
basic arguments would remain valid for the case of deforming

media. Aside from certain obvious alterations to account for the

lno11 [1959, 1963, 1965].
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kinematics, the only change we need make is to alter the First
Law to read

g -
dt(E + K) = H + W,

where E 1is the internal energy of an arbitrary subbody Q , K
the kinetic energy of Q. , H the heat flux into (I from its
exterior, and W the rate of mechanical work done on Q . To
get all of our results it is then sufficient to assume that the

méchanical work W takes the classical form.




II. Bodies, Subbodies, the Material Universe

As we treat here only rigid immobile bodies we dispense
with the usual definition of a bodyl and regard it merely as a
standard region in Euclidean three dimensional space E= . We
then consider subbodies of the given body as members of a class
of standard subregions of the body. To fix notation let us here
point out that we use the term standard region for the closure
of an open set @ whose boundary is the union of a closed set of
zero area and a finite number of class Cl two-dimensional mani-
folds, each of the manifolds having the open set (I on just one side.

We reserve capital script letters for subsets of & and
denote, for Q. c § , the boundary of @ by Q& , the interior by a s
and the closure by @ . Given any set Qc& we write

a® = E-a

and call (A€ the exterior of @ in & .

Henceforth we shall consider a singie, fixed QEQX,‘B .

Given any other set Q< ® we denote the relative exterior of &

in (3 by
G =86-0a.

Of course

a® = aPug®.
We shall consider a classk/l/lo3 of subsets of B ; elements of ./VU8
will be called subbodies. The structure we require on M3
(which imposes certain smoothness requirements on (B ) is given
in the following axiom. For convenience we consider the null

set @ to be a standard region.

lNo11 [1959].
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Axiom 1l: The set J/l(8 has the following properties:

(i) every element of M@_i_s_ a standard region;

(ii) @ cM® implies @ e M®;

(iii) @,ceM®B implies AU Ce M5,

(iv) if C is a solid circular cylinder or a solid

prism in & then CNQA €J4(85

(v) if QA e M@" and &4 is any reqular surface included

in oQ there exists a monotone seguence {Qn} of elements of
ps — =

Me’, A <@, such that N A = o;

n = == n

n=1

(vi) if Qe M@ and a 4is any vector, then QA+ a

contained in B implies @+a GM(B .
The conditions (iv) and (v) ensure that M‘B has sufficiently-
many elements to generate the Borel sets of @3 and of any
surface BQ' with QEJA@ . The other conditions guarantee a
structure on MG sufficient to make meaningful all operations
carried out in what follows. Note in particlular that ¢,(B<—:;M’o?:
The operation appearing in (iv) occurs sufficiently often that
we introduce a special notétion for it: for any sets 3,G
in § we define
5AG =F N G

Then it is clear that @,Ce M@’ implies QACe Mﬁ .
We will say that two sets &,G are separate
if FAG = @; it follows that two subbodies @,C are
separate if and only if (anc)c(o@NOC).

One may -aefine, in the manner of Noll [1963, 1965]
a material universe as a collection of bodies each of which has
the properties of @B . This, however, yields more structure than

is necessary for the theory; it suffices to consider, besides




the elements of M®, only the exterior, B, of B . More
precisely we define M, the material universe for 63, by
M= {9 |pcMBor 8%<MF.
The structure imposed on Aﬂﬁ yields a corresponding structurel
on M : g , Pe u{/f; ge M implies e M; and Ql,QZGM
implies both B U8, e M ~ and 8,A8,¢ M. Of course
any element in M is either a subbody or the union of a
subbody and (Be.
We shall be concerned with real-valued set functions defined
.,on JA@'or M. We say that such a function « 1is separately
additive,or simply s-additive,if
a(auc) = o(Q@) + o(C)
for every pair of separate elements (@,C in the domain
of o.
Fundamental to this work is the assumption that such

functions may be extended to the class of all Borel sets of @,

VFor convenience we shall refer to these sets as parts. Given
any part Q we denote the Borel sets of § by B(SH). We

shall use the term measure exclusively to denote finite real-
valued Borel signed measure. Except for this convenience we
shall use the standard definitions of measure theory; these and all
uncited results used herein can be found in the book of Halmos

(1950]. We use << to denote absolute continuity and

write pu = u+ - g~ for the Jordan decomposition

of the measure u. We shall use the terms '"almost every!',
"almost everywhere'' and ''essentially' to denote ''except on a

set of volume (area) measure zero' (the choice between volume

lwith U as join and A as meet both % and M have the
structure of a Boolean algebra.
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and area will be clear from the context); in all other cases we
specify the measure involved. We reserve V for Lebesgue

volume measure in € and A for Lebesgue surface measure on
manifolds in € . The only non-standard measure-theoretic concept
we need introduce is the following: we say that a measure u

follows a measure yp if

phoe< vt poo<< v
that p opposes Vv if
- - +
p+ < v, p << v

Clearly u follows (opposes) v 1if and only if any Hahn decomposi-
tion for v is also a Hahn decomposition for u (—u); or if

and only if pu << v and the Radon-Nikodym derivative -%%
ié essentially positive (negative).

We shall reserve the term surface for the (relative) closure of
an oriented class Cl two-dimensional differentiable manifold or
the finite union of such (closed) manifolds. The boundary of a standard
region is taken to be oriented in the'positive sense with respect to
that region, i.e. with the orientation corresponding to the
external normal vector. A surface contained (in the sense
of set-inclusion) in another surface is a positive segment of
that surface if it has the same orientation; if it has the
opposité orientation it is called a negative segment. We define
in an obvious manner the positive and negative normal vectors
to a surface; if ¢ is an oriented surface, then -4 is the same

surface taken with the opposite orientation. A point x

in a regular surface 2 will be called a regular point of Ag
if 25 is smooth at X. A surface 18 contained in @ is called a

material surface if it is a positive segment of the boundary of
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a subbody. If the (relative) interior of a material surface zf
is disjoint from 86% then & is said to be interior to a,
1f £ is a positive segment of both Bﬁl and Bﬂb, where
ﬁl,ﬂzeJM, then & is also a positive segment of a{ﬁrﬂmz),

We shall consider a fixed time interval, i.e., an interval of
the real line, and shall denote points of this interval by t. I

every assertion involving functions of time we shall imply, without

so stating, that the assextion holds for every t.
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III. Energy

We now assume that we may associate with the body B at
any time t a scalar Et(ﬁ) which represents the internal energy
of the body at that time, and a scalar Ht(G,@?) which represents
the flux of energy into B from its exterior 03°, The First
Law of Thermodynamics for the body B is the assertion that the
time rate of change of internal epergy of B equals the amount of

heat that flows into (B from its exterior:

d _ e
at E¢@® = H B.8").

The basic continuum hypothesis is then that Et(a) and Ht(a,ae)
are defined and satisfy this relation for all subbodies (I con-
tained in 8. Beyond this we assume that we can distinguish not
only the heat flux Ht(@,ae) into Q@ from its exterior but
also the heat flux Ht(a,£) into @ from any other element
8 of ﬁhe material universe, and that Et(-) and Ht(-,ﬁ) are
extendable to measures, Further, wé make a restriction on E

t

and H which may be interpreted as requiring that a part of 3

t
of arbitrarily small volume must have arbitrarily small internal
energy and can accept only an arbitrarily small amount of direct
radiation., Correspondingly, we assume thét an arbitrarily small
surface of contact can suffer only an arbitrarily small amount of
conductive transfer,

Therefore, we assume the existence of two set functions:
E_, which assigns to each part ® in B(®) at any time t a
scalar Et(@) called the internal energy of 0’; and Ht’
which assigns to any Sec¢ M and any part G’C&? a scalar Ht(Ghﬁ),

the heat flux into ® from Q.
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Axiom 2:
(i) E.(+) is a measure on B(®);
o (4d) the derivative Et(@) = g% Et(@) exists for each.

CeB (B) ;

(iii) there exists a scalar «a(t) such that

|[E. @) | < alt) V()
|2 (@) ]| < alt) V(O)
for all (PcB(®).

Clearly (i) and (iii)l imply that the restriction of Et
to J4ﬁ‘is s-additive,

It is possible to state Axiom 2 in a somewhat weaker manner.
First, if E_ 1is assumed defined, s-additive, and compatible |
with (iii); on M8 then by the theorem in the Appendix it can be
extended to a measure on B(®), and this measure has property

]

(iii)l. Similarly, if E_ is assumed to exist for all Clejlﬁ
and to obey (iii)2, it.can be shown to be s-additive on J4B and
hence also extendable to B(®) as a measure. Alternatively, since
|E, (@) | < a(t)V(P) implies E_ << V, it follows from the Vitali-
Hahn-Saks Theorem1 that if E exists for every (PeB(B) it

t
is also volume-continuous. We leave Axiom 2 in its present form
to preserve uniformity with Axiom 3 below,

It is important to note that Axiom 2 implies ﬁt(a) is a
measure. Indeed, that ﬁt(-) is a finitely additive finite set
function on 13(8) is immediate from (ii); that it is also
countably additive and hence a measure follows from the Vitali-
Hahn-Saks Theorem. Note that assumptioh (iii) implies absolute

(]
continuity of E and Et with respect to V but is stronger:

t
it bears the same relation to absolute continuity that Lipschitz

'see, e.g., Dunford and Schwartz [1958], p. 158.
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continuity bears to continuity in the.case of functions on the

real line. This volume continuity ofvcourse rules out point,
line, or surface concentrations of energy in the body; by the Radon-
Nikodym Theorem it implies the existence of essentially bounded

functions e(-,t) and e(-,t) on B such that for every part O

£ (0) = Le(i,t)dv(g,
E (0) = Lé(;g,t)dV(g.

We call e(x,t) the volume-specific internal energy at‘(i,t);

[ 4

conditions under which e(x,t) = é% e(x,t) almost everywhere
.are obvious.
We now make the corresponding assumptions regarding the

heat_flux H

t.
Axiom 3:
(1) For each 9e M the function Ht(o,ﬂ) is a measure

on IB(c@b);

(ii) for each part (P the function Ht(0>,-) is s-additive

on all elements of M separate from @,

(iii) there exist scalars B(t), vY{(t) such that

B, (@,8) | < BEIVIP) + ¥(£)A(C N 39)

for all (PeB(®B), 8¢ M which are separate.

Statement (iil) makes precise what was indicated earlier:
that to have heat transfer from § to @

the part (P must have non-vanishing volume (yielding radiative
transfer) or a non-vanishing area of contact with 8§ (yielding
cénductive transfer). Of course Ht(-,ﬁ) is s-additive on

those elements of M® separate from &.
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An interesting consequence of the assumption that Ht(-,@e)
is a meaéure is the possibility of sectioning any subbody Q@ into
absorbent and emmittent portions. We say that a part (P eB(Q)
absorbs heat from @Q° if Ht(@,@e) > O, emits heat to Q®
if Ht(@,Qe) < 0. Then as a consequence of the Hahn Decomposition
Theorem @ is the union of disjoint sets Q% and @~ such that,
with respect to Qe, every part 0c a+ is heat absorbing and
| every part °c Q" is heat emitting. Any part (’<Q moreover
admiﬁs the decomposition & = 03'+UCP—, O)+ﬂ@' = @, where et
is contained in Q+ and hence absorbs heat from CQe and P~
is contained in @~ and hence emits heat . to Qe. Of course the
sets Q% ana Q" are determined only to within sets of |
Ht(-,Qe) measure zero;
As a consequence of Axiom 3 we have the following centrally

important decomposition theorem for Ht'

,?‘heorem l: For each .\96/‘2; Ht(-,m admits the unique decomposition
Ht(.’g) = Rt(',$) + Qt(.’ﬁ)’

where Rt(.,.s) and Qt(.,)s) are measures Q_r_1 LB(.;S)b) with the

following property: for any part (Pcsb

R (P,8) < B(t)V(FP),
0, (@,8) < Y(£)A(PNS) .

Moreover

I

R (P, 8)

Qt(@,as) = Ht( ¢’NAY ,H) .

Ht(G’- 09,H),

We call Rt((P,aQ) the radiative heat flux into (¢ from &,

Qt((P,;Q) the conductive heat flux into ¢ from &8.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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Before proving this theorem let us note that what we havei
chosen at this point to call radiative and conductive heat
flux need have little or nothing in common with the classical notions
of conduction and radiatiog) we shall see that further special
assumptions are necessary before we can’identify them with the

W classical forms.

Proof: If we define R, and Q, as above, then Ht(G>,$ )=

Rt(Gﬁ ) + Qt(GX,Q) and by Axiom 3 the measures R, and Q. have the

t
desired properties. The uniqueness of the above decomposition follows
from the fact that it is a Lebesgue decomposition of Ht(',$ ) with
respect to volume. This compietes the proof.

It is clear that both Rt(G),-) and Qt((?,~) are, for any
part @ of (3 5 S-additive on those elements of /W separate from e,

A direct consequence of Theorem 1 is the fact that Rt(~,ﬂ )
is absolutely continuous with respecf to volume and Qt(',ﬁ ),

. when restricted to B ® ), is absolutely continuous with respect

.to area. Thus there exist functions ry(-,t) and q&(*,t),

the first defined on Qb and the second on 38, such that

R (®,5) = f@rﬁ(g,t)dvqg),

0 (@,0) = | qxnaal,
oN3Y

for all parts P C @b. Note that the energy flux Ht now begins

to resemble its classical counterpart. The functions dg and

Ty’ however, are dependent upon §, as indeed one would expect.

The remainder of this section and most of the next is devoted

to the problem of isolating the nature of this dependence,

e
. especially for the most important case: Rt((l, Q~) and

Qt((l,cne)when €t is a subbody. An immediate consequence of the

lFor an axiomatic treatment of radiative transfer, see Preisendorfer
[1957]. .
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s-additivity of Rt((P,') is that for any JS)l,a92€Mwhich are
separate

ro (x,t) + ¢ (Ef,’t) = r

(x,t)
$ O 8,99,

for almost every Xe (anU sz)b.

We may prove for the conductive flux a much stronger result:
that Qt(@ ,9) depends not upon § but only upon the material
surface (in 0d8) in question.

Theorem 2: Corresponding to any material surface ,J there

ekists a scalar Qt(eg) such that
0. (4) =0, (J.,8)

whenever o is a negative segment of the surface 38 of ®cM.

Proof: We shall prove that given any material surface Pt

there exists a measure Qé(-) on B(JL) such that

é =

. () = o (F,8)
for each (PeB(P) whenever & is a negative segment of 8.
Then we simply define Qt(gg) = Qf(,é).

Thus let £ be given; since 4 is a material surface there
exists at least one ®Hef{ for which 4 is a negative segment
of Jd8. For any PecB(F) define

S =

Then Qi(-) is a measure on B(g); we shall show it is independent
of &. Suppose & is also a negative segment of 38, feM. It
follows, as noted earlier, that £ and ﬁ are not separate and

. . A . A
that § is a negative segment of J(®A N). Since YAS is con-
tained in both ® and ﬁ, the following lemma then shows

A A
Q. (¢,8) =0, (P,8A8) =0 (F,0).
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Lemma: Let ﬁl,ﬂzeJM ,8,€8,, and let (P be a part

with (P < 5391 N 8)92. Then
Ht(Ghﬁl) = Ht(ayﬁz).

Proof: Since every element of M is either a subbody or the
exterior of a subbody it follows that |

the (relative) boundary of 6.\9108;92

is of zero area measure, so we may assume (P (relatively) interior

to agl N aﬁz. Next 82 =

8, U (&i A 8,), while #§, and

Si/\ 192 are separate; hence

_ e

H (C,8,) =H (®,8) +H (P, A 8,)).
Since ( is interior to 64\)1 N 8&)2 and thus disjoint from
si/\ &2 and since V((®) = 0 it follows from (iii) of Axiom 3
that Ht(@,&?_/\ 8,) = 0, which proves the Lemma and hence

the Theorem.

It is clear that Qg(-) as defined above is area-continuous

on lB(.é); hence ' there exists an essential'ly bounded

function (-,t) on 4  such that

EX!

ol (o) [ g moa,

or, more pertinently,

0, () = ,3‘ q (e, ) A (x) .
4

Moreover it is an obvious property of Qt(-) that 281 a positive

segment of 52 implies Q'ii(-) = sz(-) on [B(Alh thus
ag (x,t) = aqg (x,t)
51 J2

for almost every ;\gez%_. Finally we note the useful fact that

if :31 and .32 are positive segments of ,ao such that
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28 = ’élu'(gz .and A(zglﬂ 23»2) = 0O, then
0 4 =0 (3) + o (4).
We shall say that there is no internal radiation if for

every pair of disjoint subbodies Q,C

Ht(Q,C) 0.

If this is trué then Rt(a,c) = 0 for every pair of separate
subbodies @ and €. But by the theorem in the Appendix
Rt(-,C).is>determined by its values on subbodies; hence
Rt(@,c) = 0 for every subbody C and every part O’eB(Cb).
Consequently ,

R (#,0°) = R (®,&7) + R (€,8%) = R (0,0
for every subbody @ and hence

R (0,0°) = j E oL av ().
@

Thus the absence of internal radiation implies that the radiative

transfer Rt is completely determined by the single density

r .l This is the case that is usually considered in the classi-

@e
cal studies in continuum thermodynamics.

lA more general result of this form is given in Theorem 5.
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Iv. The First Law of Thermodynamics
We now make formally the assumption that the First Law of
Thermodynamics holds for subbodies of 3

Axiom 4: (The First Law of Thermodynamics) For every

subbody Q

_ . o

E,(Q) = H(Q, Q).

An immediate consequence of Axiom 4 is that the mapping

@-*-Ht(CE,CRe) is an s-additive function on JWCB; ife.,
H(aQauece, (au )€ = H (@, a®) + Ht(C,Ce)

for every pair of separate subbodies @ and C. From this fact
follows a result which may be called the Principle of Detailed
Balance. We emphasize that this result has nothing whatsoever

to do with the notion of equilibrium.

Theorem 3: (Principle of Detailed Balance). For every
NI NS NTNINTNTN o —

pair of separate subbodies (@ and C

Ht(Q,C)==-Ht(C,Q).
Proof: The proof is trivial when one observes that since
Ht(-,-) is s-additive in each argument and a®* = (auce)®u C,

e

cc=(aune®ua,

e e e e
H (@,a”) +H.(C,C) =H(a,(@auCc)) +HI(,(AUC

+ Ht(a:c) + Ht(C,CQ)

1l

H(auc,(au ) + H (Q,0)+ H_(C,Q).

Thus Ht(Cl,C) = —Ht(C,(B).

We now establish that this result is also true for Qp
and hence also for Rt‘
Theorem 4: (Principle of Detailed Balance for Conductive

Transfer) For every material surface 48 interior to (3

0, (B) = -0 (-8)




LA L e e - e A T ——
Moreower we can choose [Gln} and { (Qn} such that for e
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Proof: Since & is interior to ® s -4 is also a material
surface. Hence by (v) of Axiom 1 there exist decreasing sequences
A :

[Qn] and [Qn} of subbodies such that_;zg is a positive segment

A
of 9o Qn for each n, -4 is a positive segment of BCQn for

each n, and
@

&, = 3

na
N = n
n=1 n n=1

ach n
Qn ‘and é\tn are separate. By Theorem 3, then,
A A
H (O, Q@) =-H (&, Q)

) ‘
or equivalently, if 2 =0Q@ N BCQn and ‘Q%n is taken to

n

have the orientation of A,
a a._,a.)
@
Since N Z, ""'Zg,
n=1
0 (£ >0 (S), o (-5 )2 o, (-8)
as n-—oo. Thus to complete the proof we have only to show that
A A
R (@ ,Q)—0, R (A, @ )0,
as n-—~oo. But this follows at once from the inequalities

A
IR (Q , Q)] < alt)v (@),

A A
IR (Q_, Q)| < a(®)V(A),
of Theorem 1.
Since for every pair of separate subbodies Q@ and C
H (Q,C) = R (a,0) + o (8),
where & is the (possibly empty) positive segment of JQ@ for

which & = 3@ N 3C, Theorems 3 and 4 imply
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Theorem 5: (Principle of Detailed Balance For Radiative

Transfer) For every pair of separate subbodies A and C

Rt(a')c) = "Rt(CJ&)o
Since '

e e, _ ' e
R (A, Q") + R(C,C7) = R QUC,(Que))

+ Rt(&,C) + Rt(C,CQ)
for every pair of separate subbodies @ and C, we conclude
from Theorem 5 that the mapping Q - Rt(CR,(le) is s-additive.
This conclusion the ﬁact that lRt(Cl,(le)\g B(t)v(Q) and
the theorem in the Appendix imply the following striking result,

Theorem 6: There exists a function r(-,t) on (B such that

for every subbody Q

R (@, Q%) = I@r(§,t)dv(§) :

Hence there exists a single function «r(-:,t) whose
integral yields the volume-continuous part of the right-hand
side of the First Law. We remarked atAthe end of Section 3
that in the absence of internal radiation Rt(Q,Qe) = Rt(Q,@e).
Eence in this case r _(-,t) = r(.,t) almost everywhere, This is

e
e
of course not true in the presence of internal radiation.

Ci




21

Our next objective is to establish the counterpart of
Theorem 6 for Qt' With this in mind we now introduce certain

auxiliary notation. For any well-behaved monotone sequence

(S o)
{Azn} of sets which tend to the single point x (i.e. {x} = N An),
. . - n:l
and which are measurable with respect to some measure u, it is
well known that SA fau
: . n
f(x) = lim ——F——
n —» @ ’J'(An)

for almost every x, provided only that £ 1is pu-integrable.
We shall apply this result to the surface integrals that
define Qt' (It is not difficult to show that the sequences
of sets we shall u#e are sufficiently well-behaved.)

o

Given a point xe 3 and a unit vector ),
we define ~ C(x,A\,r) to be that circular cylinder
centered at x with radius r, axis parallel to )\, and

height 2r, Now suppose '§’ is a regular point of the material

surface & and let n denote the positive unit normal to £ at
X. We define :
Ar) = Fn clx,n,0,

letting the orientation of B(r) agree with that of & . since

xg is smooth at x it is clear that for all sufficiently small «r

gg(r) intersects the boundary of C(x,n,r) only on the curved
segment, i.e., Xeﬂghﬂ F]BC(Egggﬂ] implies |(y - x)+p| < r

(Figure 1). W 111 1 poi ity i
g ) e wi call x a point of density of 9, on B if X
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is a regular point of ;X and
o ()
aglx.t) = Him Trsryy

r—>0

Since this relation
holds for almost every §§18 and since qﬁ("t) is indeterminate
to within a set of measure zero,we may suppose qé(.’t) to be
such that the above relation is valid whenever the limit on the right-
hand side exists. Then Theorem 4 implies that if x is a point of
density of Q_ on &, it is a point of density on -g and

qé,(;g,t) = ~q_xg(,>5,t_).

We now have sufficient apparatus at hand to establish the
counterpart of Theorem 6 for Q- This, a direct analog of a
result of Noll [1959] regarding contact forces, is central in
the theory'of contact effects and provides a basis for a result
usually assumed in the classical 1itefature. The proof below
is essentially that of Noll,

o
Theorem 7: For every Xe¢ 03 and every unit vector n

there exists a scalar q(x,n,t) such that for any material

surface 2 interior to @3

0. (8) = [alxn@,vaa(w,
3

where n(x) is the positive unit normal to &5 at x. Further,

the function qg(x,-,t) satisifes

q(,}\{,:,rl)t) = 'q(is'R:t) .

Proof: Recall that for every material surface ) interior to (B
o (F) = jqé(i,t)dA(;g)
y.!

and that almost every §§£g is a point of density for Qt on 48.

Thus it is sufficient to show that for every (x,n,t) there

exists a scalar q(x,n,t) such that for any 2 inteérior to 03
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q‘g(;s,t) = q(x,n(x),t)

whenever X is a point of density for Qt on ,eS’ .

Choose. (x,n,t) arbitrarily and consider the family & of
all material surfaces through x with positive unit normal n
at x. If x 1is not a po.int of density for Q_ on any Beh
we choose q(x,n,t) arbitrarily and set gl(x,-n,t) = -qa(x,n,t).
If it is a point éf density for Qt on some surface ;;3160

we set q(x,n,t) = dg (x,t) . We need now only show that if it
1

is also a point of density for 28269, then qd (5, t) = q;B (x,t) .
1 2
Let k Dbe regular for both )81 and 292 and consider the

cylinder C(x,n,r) and the surfaces Jl(r) and 2?2(r) defined
as above, For sufficiently small r let Gll(r) denote the
subbody whose boundary consists of gl(r) and a positive segment
of BC(;\Q,AQ, r). Let @2 (r) be defined in the same manner,
Then we may write (see Figure 2)

(0 = B0+ G + 3 (n),

3, (r) = B, (r) + G(r) + F,(x),

n

where G(r) is that portion ofBC(?l(r) ﬂBCQz (r) common to the two
subbodies (excl’uding )t'?l(r) and 292 (r)). As r tends to zero
we have the estimates

A (r) = 7r% + o(r),

A(F (r)) = 0(r2),

vig,(x)) = o (x?)
for ao=1,2.

Using the above decomposition of BCza(r) we now apply the

First Law of Thermodynamics to Qa(r):

B (Qy = R(Q, Q%) + o (4 () + o (G(x)) + 0 (5,(x)).
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Then by the above volume and area estimates, together with the
boundedness properties of Et, R, and Qt given in Axiom 1 and
Theorems 1 and 2, we have
_ 2

0, ( Jo(r)) + 0, (G(x)) = o(r?),
and on subtracting this with o = 2 from the same expression
with « = 1 we arrive at

_ 2

Thus if we divide by wrz and use the area estimate we conclude

that 0 (S, ) 0 (B o2
A(S, (1) - A(B, () 2

X

since x 1is assumed a point of density for Q. on each of

pos

1 and 532, this yields
qdl(ﬁ,t) = qu(ﬁ’t)
when r —~0, which completes the proof.

We have now established the classic starting point of the
theory of heat conduction. A result proved by'Cauchy[l823J827]puts this
in a somewhat more familiar form provided the function g(-,n,t)
is continuous for every n. In this instance one has the
existence of é vector-valued function g(',t) such that

a(x,n,t) = g(x,t)n
for all §§6§ . (a strongér form of Cauchy's theorem is given
by Gurtin, Mizel, and Williams [1967].)

We summarize our results in the following theorem.

Theorem 8: (Integral Form of the First Law of Thermodynamics)

For every subbody (QCZCB

Jemwnawe = [reovww + [ awnw. vaw.
& @ 2

. . . '> '.
If the function g(-,n,t) is continuous on @ for each n, then
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Sé(z,t)dv(;g) = jr(;s,,t)dv(zg) + glg(g,t)-g(‘,%)dA(g).
a . @ v 0@

The local form,
é'=r + div g,

follows under obvious smoothness assumptions.

Our theory of the First Law of Thermodynamics is equivalent
to the mechanical theory as treated by Noll [1959] (except that
his theory necessarily treats vector—valued measures); in his termin-
ology one would write Haﬁ-) in place of Ht(-,Cle);]HQ(d
corresponds to his ''system of forces'* while our Et(') corresponds
to his linear momentum,

Our added assumption that Ht(G),') is s-additive over M
allows us to remove one of his axioms (the Lemma to Theorem 2 is
his Axiom C.3) and to remove a -further assumption he must make
(his assumption (b) on p. 278; cf. our Theorem 6) to derive the

classical form of the balance law.




V. Entropy 28
The basic form of the Second Law of Thermodynamics
is that the entropy of an isolated system is always non-decreasing
in time (modulo an interpretation of the terms '"'system''and
'y solated") .l This suggests that if a system is not isolated it
must in some sense exchange entropy with its surroundings. Hence

for our work we are led to postulate the existence of a scalar

Mt(03,63e), the entropy flux into 03 from 63e, which is analogous

to the heat flux, Ht(@,d?)e) . Then if St(@)) is the
entropy of 03 at time t, its rate of increase must always be
greater than or equal to the influx from 636:
L s (B) 2 M (&, BS).
Moreover Mt((B; @) must be zero when (B is isolated, which in
our formalism is interpreted to mean
H(C,®B% =0 |

for every part (® of O3 . wWith this condition we adopt the above
inequality as the appropriate form of the Second Law (Section 6).
We then assume (i) that St(Q) and Mt(Q,Gze) are defined and
satisfy the Second Law for every subbody Q of & ; (ii) that
we can distinguish not only the entropy flux M, (Q, Q%) into Q
from its exterior, but also the entrdpy flux Mt(Q’ 8) into Q
from any other element & of the material universe; and (iii)
that St(-) and Mt(o, 9) are extendable to measures.

Thus we assume the existence of two set functions: S£,
which assigns to each (PeB(®B) at any time t a scalar St(G’)

called the internal entropy of ¢ ; and M,_, which assigns to

t)
any He M and any part P c & a scalar Mt(@,e@ ), the

lAn interesting interpretation of the Second Law has been given by

Coleman and Mizel [1967] who have shown that when the temporal

evolution of a system of thermally interacting particles is governed

by a system of ordinary differential equations, the existence of
entropy and the validity of the Second Law are consequences of a
postulate of asymtotic stability.




29

rate of entropy E£2E§£§£,(Or entropy flux) from 8 into .
Axion 5
(1) St(-) is a measure on B(A);
(i1) tﬁé derivative ét(OD) = g%st(6>) exists for each
PeB(03) ;

(iii) thére exists a scalar 6(t) such that
ISt((P)I < S(R)V(P)
|8, (®) ]| < 8(R)V(P)

for all Q@eB(B).

This is an exact analocj of Axiom 2j. hence the comments
following that axiom also apply here. Thus St is also a
measure on [B(0) and by (iii) there exist essentially bounded

functions s(.,t) and s(-,t) on B3 such that for any part ®

5.(®) = [ s(x,00av(y)
e
§.(0) = j@é(;g,t)dv(;g).

We call s(x,t) the volume-specific internal entropy at (x,t);
under suitable assumptions é(§;t) = é% s(§;t) for almost
every X.

The following axiom is the counterpart of Axiom 3, which gave
the properties of H . Note that alfhough parts (i) and (ii)
are exact analogs of the corresponding parts of Axiom 3, we
here make no boundedness assumption analogous to (iii) of
Axiom 3.

Axiom 6

(i) - For each Se M the Ffunction Mt(-,s ) is a measure

on B(sP);

(ii) for each part (® the function Mt‘<?") is s-additive

on all elements of M separate from ® .
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One can define, just as for Ht’ an absorbent-emittent

sectioning of any subbody ( with respect to M In the

£
following section we shall use the Second Law to derive further

properties of M,.
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VI. The Second Law of Thermodynamics, Existence of Temperature

Definition: A_pggg ¢ of 03 ig_thermall isolated from
8eM ggii_irgg t if for each part O'c @

/ —
Ht(@,n) = O.

This condition, which amounts in measure theoretic terms to
a statement that the total variation of Ht(',ﬂ ) is zero on 0%
presents a very clear physical picture: a part is thermally
isolated from #® if no subpért of it exchanges heat with §.
With this notion the Second Law can be stated quite simply.

Axiom 7: (The Second Law of Thermodynamics)

(i) For every subbody Q
« e
St(CE) Z.Mt((?,<3 )3

(ii) 4if a part ¢ is thermally isolated from & ¢ /M

Mt((P,JS)) = 0.

It foilows from the first two laws that if a subbody @ is

isolated from its exteriér, then
E (a) = o, s.(@) > o,
which is the traditional form of the first two laws for ''universes',

It should be noted that neither in Axiom 7 nor in the remainder
of this work do we say anything about reversibility or irreversi-
bility.

Before we develop the considerable structure induced on the
entropy flux Mt by Axiom 7 we make several simple observations.
The introduction of the First Law of Thermodynamics allowed us
to deduce instantly a principle of detailed balance for the
energy flux Ht (Theorem 3), and this led to several_striking

results. The Second Law, being expressed as an inequality,

clearly cannot yield so much; in particular balance of entropy
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flux does not seem to be a universal rule. (A simple counter-
example, not strictly included in this theory but nonetheless
relevant, is that of a system of particles at different tempera-
tures radiating between themsélves.) We define the net entropy
exchange between two subbodies @ and C to be the quantity

ﬁt(a,c) = Mt(Q,C) + Mt(c,@).
If the entropy flux balanced M£((1,c) - would be identically
zero, Next we define the entrogz production rate N by

: e

Then the Second Law implies

N (@) > 0
and Nt(Cl) = ét(CE) when @ is thermally isolated from its
exterior.

It is usually assumed in the literature that N is s-

t

additive. Our next result shows that such an assumption is equi-

valent to requiring that M, balance. As will be seen in Section
7, the assumption of balance of entropy flux is at the foundation

of the classical theory of heat conduction.

Theorem 9: For any pair of separate subbodies (¢ and C

Nt( aucec - N (@) - N (C) = M (@,cC).
Proof: The above relation follows at once from the definition

of N the identity

y
M (@, a®) + Mt(C,Ce) =M (@uec,(Qu )% + M (@,c)
(c.f. the identity in the proof of Theorem 3), and the fact that
ét is s-additive,
If we take C = (1P in Theorem 9 and use the first pért of
the Second Law we arrive at the following upper bound for the

net entropy exchange between any subbody @ and Clb, its

relative exterior with respect to 63,
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— b
M (@, a7) < N (B),
The second part of Axiom 7 is equivalent to the assertion that
Mt(.,ﬁ ) is absolutely continuous with respect to Ht(-,ﬁ ),
and this observation leads to the following counterpart of

Theorem 1.

Theorem 10: For any e, Mt(-,ﬁ ) admits the unique

decomposition.

Mt(',ég) =Kt(',39) + Jt(_""g),v

where Kt(~,a9) and Jt(-,ag) are measures on (B(agb) with

Kt(-,£ ) absolutely continuous with respect to the radiative

heat  flux Rt(-,& ) and Jt(-,ﬂ ) absolutely continuous
with respect to the conductive heat flux _,Qt(', ®). Moreover
K (C,0) =M (P-08,08),

J (¢,8) =M (PN ,0).

We call K ((,9 ) the radiative
entropy flux from ® into ® , J (®,9) the conductive entropy
flux from 8 into @ .

Proof: Let K.  and J_ be defined as above. Then M_ =
Kt + Jt. Further Jt(03,ﬂ ) = Jt( G?ﬂ 09 ,98), and on B(Bﬁ )
we have

Jt(-,ﬂ) =Mt(-,39) <<H(-,8) =0, (,8).

Hence Jt(-,ﬂ ) << Qt(o,ﬁ ). That Kt(-,ﬂ ) << Rt(.,ﬂ ) follows
in a similar manner. Finally, since Mt(-,ﬂ ) = Kt(-,& ) + Jt(-,m)
is a Lebesgue decomposition with respect to Rt(-,ﬁ ), it must
be unique.

It follows from Theorems 1 and 10 that Kt(-,S ) is absolutely
continuous with respect to volume and Jt(~,® ), when restricted
to B(0o8 ) is absolutely continuous with respect.to area. The

absolute continuity of Kt(-,ﬂ ) implies the existence of a function
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k,(-,t) on o° such that

8
K (P,8) = |k (x00av()
¢ :
for all parts = &b, Moreover for any Ql, 826 M which

are separate

k

0 (x,£) = kg (x,t) + kg (x,t)

us, 8, 2

1
b
for almost every 5€($1Uﬁ2) .
Next, Theorem 10 and an argument identical to the one used
to prove Theorem 2 yield

Theorem 11: Corresponding to each material surface ;f there

exists a scalar Jt(gg) such that

I (8) = 3. (5,8)

whenever gg_lg_g negative segment of the surface 048 of seM.

By Theorems 1, 10, and 11 there exists, for each material
surface o , a function jd("t) on & such that

3. (8) = [z naa;
2 |
a positive segment of .ﬂg implies

jgi(z,t) = jzg2 (x,t)

and Jl

for almost every Xe dl.

More important for thermodynamics is the implication of
tbeaﬂﬁsolute continuity of the entropy fluxes with respect to
the heat fluxes, for this implies through the Radon-Nikodym
Theorem the existence of temperature.

Theorem 12: (Existence of Temperature) For every e M

ﬁhere exists an extended non-zero-valued function eﬂ(~,t)

on sb such that

R | ~ ry (x,t)
K (P, ) = I

—S——— AV (x)
o eg(x,t)
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for every part Pc skﬁ For every material surface 4J there

exists_gg extended non-zero-valued function Qd(-,t).gg &
such that
q4(x,t)
I (J) = da (x) .

Moreover, if ;51 is a positive segment of 2%,
o, (x,t) = 0 (x,t)
‘Jl 'AZ

for almost every x in zﬁ_(with respect to the measure Qt).

Of course e.@ and % are the reciprocals of the Radon-

Nikodym derivatives, respectively, of the radiative and

conductive heat flux with respect to the corresponding
entropy flux; GS(ﬁ,t) is called the radiative temperature

(corresponding to 8 ) at (§,t) and géﬁ,t) the conductive tempera-
ture (corresponding to ﬁg ) at (§)t). It is of interest to note
that although zero temperatures are ruled out by Theorem 12,

negative and infinite values of the temperature are possible,

Theorem 13: The temperatures eﬁ(-,t) and @aﬁ(-,t) are

essentially positive (negative) if and only if the entropy flux

Mt(-,ﬁ ) follows (opposes) the heat flux Ht(-,ﬁ ).

Proof: We simply note that Mt(-,ﬁ ) follows (opposes)
Ht(-,.ﬂ) if and only if Kt(-,ﬂ ) and Jt(-, ), respectively,
_follow (oppose) Rt(-,ﬁ ) and Qt(-,ﬁ ), and then appeal to the
discussion in Section 1 of the notions '"'follow!" and "oppose!,

Before proceeding further we remark that if ® ,3€¢W?are
separate, then

1=(ra9)1+(r3)1
Soun rg t rg/ Oy rg + rg/ Oy

at almost every point in (9 U 3‘)b at which Iy g # O.

In Section IV we proved that the First Law implied

qﬁ(g,t) = g(x,n,t) and that the radiative heat transfer Rt((I,CPe)

llf‘or a discussion of negative temperatures and of the circumstances
in which this concept applies see Ramsey [1956].
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is determined by a single field «r(-,t). This gave us the classi-
cal form of the First Law. On the other hand, Theorem 12 implies
that the Second Law can be expressed as follows.

Theorem 14: For every subbody «

Fe (e t)
jé(;g,t)dv(x) > j axnbd,t) aA(x) + j________ av (x)

This form of the Second Law is still far from its classical
counterpart; we cannot, however, reduce it further without special
assumptions., The Second Law by itself is not powerful enough to
implylthat Qa(ﬁﬁt) is independent of & , that Kt((Z,<Ie) is
determined by r(-,t) and a single temperature field ©(-,t),
and that o¢(-,t) = e(-,t). In Section 8 we will show what
further hypotheses yield these conclusions.

To a person whose intuition is based on the classical theory
of heat conduction the appearance of a conductive temperature
QJ dependent upon o may, at first glance, appear highly arti-
ficial. However, such is not the case. A physically reasonable
example in which the conductive temperature at certain points may
depend upon EX is constructed as follows. Suppose that two
separate subbodies Crl and CZZ of B are composed of a
material which is a good conductor of heat, and that their surface of
contact )5c (taken positive with respect to 5(21) is a very
poor conductor in the direction normal to it. In the absence of
radiation a method of treating such a situation would be to
assume that in C%l and éiz the temperature %k is inde-

pendent of & ( = ¢), is a smooth function of position, and

Ys
obeys Fourier's law of heat conduction g = k grade¢; and that

across .é; the temperature is discontinuous and Newton's Law
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of heat conduction g-.n h((p2 - (pl) applies, Here %k and h

~ A

are positive constants, (pl' and ¢, are the limiting values of
) j=

o
¢ as dc is approached from CQl and CQZ’ and n 1is the

positive unit normal to 5@1. Then within our framework %
° o ’
would be independent of & within @l and QZ, but for points

on ’é’c we would have % = ¢ and (p_g = ¢ thus in this
c c

special theory (QS depends upon ;ef.l In view of the above example
we are led to regard the hypotheses'which yield classical heat
~conduction and a single conductive temperature field as a consti-

tutive assumption rather than a general axiom.

lNote that in this example the entropy flux across cﬁ is not
balanced. Cf. hypothesis (i) in Theorem 18.
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VII. Heat Conduction Inequalities

1nh this section we shall examine some restrictions imposed

on J, by the Second Law. With this in mind we now lay

down

Axiom 8: There exist scalars 6(t), €(t) such that

K (P, 8)] < 6(0)V(®), [, (0, 9)] < e(t)a@nm),
for any 9eM and P (8°) .

Kt(-,& ) and Jt(-,ﬂ ), respectively, have been shown to
be absolutely continuous with respect to V and A; Axiom 8
reinfbrces this by requiring a Lipschitz-type continuity.

In Section 4 the First Law was used to show that Qt(xg) =
‘?Qt(-jﬂ) for any material surface Af. For Jt we shall
prove the corresponding result: Jt(gB) +AJt(—18) < 0; but we
are able to do so only under certain additional smoothness

assumptions. Moreover the result that qé is a function only

of the normal vector to & at a given point also does not carry
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over to ig; the corresponding result is again an inequality and
again can be obtained only upon further hypotheses,

In analogy to the convention established in Section 4 we
call =x a point of density of J_ on 48 if x 1is a regular

point of s s

g (B(x)
glet) = Lin Sy
r —+0
ané, in addition,
' ag(x,t)
Jd(g,t) = agfg:gy
provided x 1is a point of density of Q_ on 2 . As before,

we assume without loss in generality that if x 1is a point of

density of Q on .8, then x is a point of density of J
y t 3 ~ p t

on 28 whenever the above limit exists.

Let ,zg and 23

1 2
that x 1is a regular point of each. Suppose further that &

be two surfaces through a point x such
1.
and ;32 are tangent at x and have opposite orientation in the
sense that if n is the positive unit normal to 451 at x,

~

-n 1is the positive unit normal to /55 at x. Then 181 and
.;52 are said to be compatible at x if for r sufficiently
small there exists a subbody (@(r) such that
dAx) = F(x) + F(x) + (),

where &(r) is a positive segment of oC(x,n,r) and *Ja(r) =
g& N c(x,n,r) with orientation induced by ﬁga (Figure 3).
Here, as before, C(x,n,r) is the cylinder centered at x with
axis n, radius r, and height 2r. Thus, roughly speaking,
two surfaces are compatible at x if they are tangent at X

but do not ''cross''in some neighborhood of X. Any material surface

is compatible with a sphere of sufficiently small radius, but not
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every two tangent material surfaces are compatible. We may now

state the following analog of Theorem 7.

be material surfaces compati-

Theorem 15: Let 4, and 4

[\

ble at x and suppose x is a point of density of both Q

and Jt on both ﬁgl and ng' Then

g (ot + dg (60 <0

and
(631 (x,t) - %, (x,t)
%1 (x,t) @82 (x,t)

v

A (x,t)

Proof: Let (d(r) be the subbody defined above. Then since
0l (xr) = &F(x) + egl(r) + '82 (r) the Second Law implies
$.0Q(r)) 2 K (Qr), QD)) + T (3(0) + T (I () + 3. (5, ().

It is not difficult to verify that as r —O

A(ﬁa(r)) = Wrz + o(r2), a=1,2,
A (F(r) = o(r?),
v(Q(r)) = o(r2).

Thus, since s, Kt’ and J_ obey Lipschitz conditions (Axioms
5 and 8), the above inequality implies

T B, () + T (B,(x) < o(r?)
as r —-—0., If we now divide by Wr2,take the limit as r —0,
and use Theorem lg;we arrive at the desired results, for x
is a point of density—for both Jt and Qt and %gl(ﬁ,t) =
—qzz(g,t).

The second inequality of Theorem 15 is of the same form as
the heat conduction inequality derived in Theorem 17; the dis-
cussion following Theorem 17 is therefore applicable also to
the above inequality.

We now turn to the analog of the result Qt(xg) = _Qt(—xg).

We shall show that under a certain continuity assumption
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Jt(zf) + Jt(—ig) < 0. We phrase this assumption in terms of the

set function Jt; continuity assumptions on ig(g;t) sufficient

to guarantee this are easy to derive, Given a material surface
ﬁg, a sequence {(In} of subbodies is said to tend to S+ (-8)

in J_ if
| Lim J,0Q) = 3.(d) + I (-4),
n -+
lim V(Qh) = 0,
n —oo

Theorem 16: Let &/ be a material surface and suppose that

there exists a sequence of subbodies which tends to A+ (-£4)

in J_. Then
3 (E) + I (-8) < o.
Proof: By.the Second Law
$.,(Q) 2k (Q_,Q% +3.0a);
thus if {CQn} tends to K+ (-8) in J, the fact that
s (@) —~o, x.(a_,a —o,
as n-—+o (see Axioms 5 and 8) implies the validity of Theorem 16,
We shall now establish a somewhat more enlightening version
of the above result. Suppose x 1is a regulx point of a material
surface 23 and n is the positive unit normal to £5 at x. For
r sufficiently small there exists a
positive connected segment _&(r) of A that contains x and
whose (relative) boundary is contained in the boundary of the
cylinder C(x,n, r). Given g€ > O let —‘22(r)'denote the
surface
_,ge(r) = {Xl (y + en) e H(xr))
with orientation corresponding to -n at x - €n. Then for ¢
and r small enough the set CRE(r) enclosed by dC(x,n, r),
;g(r), and -zé(r) is (by Axiom 1) a subbody whenever & is interior

to O3 (see Figure 4).
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Theorem 17: Let 2 Qg_igﬁérigg_gg.63 and let x Dbe a

reéular ppint of 2. Then if
lim Jt(—-,Je(r)) = J. (- F(r))

€ —>0

it follows that

1f, in addition, x is a point of density of J, and 0, on 9,

Jg(x,t) + j_xg(gc,,t) <0

which vields the heat conduction ineggaligx

@kg(i:t) - ‘P_xg(?i:t)]
A%, t) [ pgx,t)o_ (x,t) z. O

Proof: Consider the subbody C]E(r) defined above. Since the

area of the portion of BCZe(r) contained in 09C(x,n,r) tends

to zero as € —+~0, we conclude from our hypothesis on Jt that
3 (3@ (r)) =3I (B(r)) + I (- S(x))

as € —O0. Therefore, since 1lim V((Ie(r)) = 0, Cle(r) tends to
‘ € —0
ﬁghﬂ + (- S(r)) in Jt and Theorem 16 implies Jt(gghﬂ) +

Jt(—jg(r)) < 0. The remainder of the proof is obvious.
In order to discuss the heat conduction inequality we must

distinguish two cases, If @ and ¢16 are of the same

sign at x with > w:g’ then

%
qg(§;t) > 0, which means heat flows from the positive side of zg
to the negative side, and thus that heat flows from higher to

lower temperatures. If on the other hand and © are

% -8
of different sigq)it follows that heat flows from negative to
positive temperature; thus negative temperatures represent

''hotter'" states than positive temperatures. These conclusions

are summarized on the temperature scale shown in Figure 5.
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Notice that in a continuous transition from negative to positive
temperatures one must pass through an infinite temperature; this
is an unfortunate result of the choice of temperature as the reci-

procal of the Radon-Nikodym derivative of the entropy flux with

respect to heat flux. The heat conduction inequality given in

the previous theorem is similar to the classical heat conduction

inequality, which is the assertion that

g-gradep < O,
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viir. Reduction to the Clausius-Duhem Ineguality

In the previous section we derived a general form for the
Second Law (Theorem 14) as well as the following general
restriction on the surface entropy flux:

Jg () + 7.(-L8) < 0.

It is the purpose of this éection to show that under certain
additional hypotheses the Second Law reduces to the Clausius-
Duhem inequality. To accomplish this we first prove that in
the presence of sufficient smoothness the conductive temperature % is
independent of & provided: (i) J (&) = —Jt(.—,é) for every £, and
(ii) the conductive temperature at any point has the same sign for
all surfaces through that point. We will then show that in the
absence of internal radiation the radiative entroPy transfer is
determined by a single ﬁemperature field. These two results will
then imply a slightly generalized version of the Clausius-Duhem
inequality: one which involves both a conductive and a radiative
temperature field.l Finally we will show that certain consti-
tutive assumptions imply that these two fields are equal.

We shall say that the surface entropy flux is balanced if

I (F) = T (-F).

To simplify the statement of the following theorem let us agree

to write
(20t = 3 (1)
o ;
for any xe@, where T is a plane material surface through X

with positive normal R.z

1. . . .
This general form involving two temperatures was first proposed

by Gurtin and Williams [1966-2].

It is clear from the discussion following Theorem 11 that j (x,t)
is the same for all plane material surfaces through x with '
positive normal n. ~
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Theorem 18: (Existence of a Single Conductive Temperature

Field) Suppose that

(i) the surface entropy flux is balanced;

. o
(ii) for each xec(@, sgngo’é (x,t) is independent of 2

~

(iii) for each n the functions q(:,n,t) and 3j(-,n,t)
: o
are continuous on @B.

Then there exists an extended non-zero-valued function of.,t)

on (B such that for any material surface 4 interior to @

gg(z,t) = @(x,t)

for almost every 5é£@vith respect to the measure Qt), We call

o(x,t) _'_c__}lé_ conductive temperature at (x,t).

Proof: The proof will procéed iﬁ a series of lemmas, each
of which is of interest in itself. The first of these lemmas
is an immediate consequence of hypothesis (i).

Lemma l: For any material surface .J,

Bglest) = =300

for almost every %eé.

Lemma 2: Let gg_b__e_ a material surface interior to @. Then

every reqular point xed is a point of density of J, on & and

t
Jﬁg(i’ t) = J(%:,Q,, t) K

where n 1is the positive unit normal to o at x.

Proof: Let x be a regular point of & and n the positive
unit normal to & at X. Further, let ™ denote the plane which
passes through x - hn and has positive unit normal -n. Consider
the infinite cylinder 6(;3,,@, r) centered at x, with axis parallel
n and radius r, let é(r) and Wh(r) be defined as before (see
Figure 6 and the discussion preceding Theorem 7), and let

h* (r) = r2 + inf{h > olvh(r)ﬂéﬂr) = @},

m*(r) = Ty py ()
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Then, since Z is interior to (B, the following conditions must
hold for all sufficiently small r: the set (¥r) enclosed by S(r)
and 7m*(r) in 8(5,2Jr) is a subbody, and
dQ(r) = Blx) + 7 (xr) + F(r),
where 3(r)C156(§;Q,r). Since & is smooth in a neighborhood
of x, we have the following estimates:
A(S(r)) = Wrz + o(r2),

A(W*(r)) = Wr2,

Il

A(F(r)) = o(r?),

V(@(r)) = o(rd),

as r tends to zero. Next the Second Law requires
§.(a(r) 2 7 a(x) + K _(A(x),An) ).
But as r tends to zero ét(Q(r)) = o(r2), Kt(O(r),&(r)e) = o(r2),

and - é
3, RA(r) = J_(B(x)) + I _(r* (x)) + o(r’);

henqe
T (Bx)) + T (r*(x) < o(r?),

Now

g, (r*(r)) =I j(y,-n,t)da(y) = j j(y-h*(r)n,-n,t)da(y),

. T* (r) ~ T (r -

and,since j(:,-n,t) is continuous on C% and h*(r) = o(l),

j jly-h*(r)n,-n,t)da(y) = j jly,-n,t)da(y) + o(x?);

T, (x) T (r)

thus we have
2
* = b
I (rx(x)) = I _(r_(r)) + o(r?)
and hence
2
I (B(x)) + I (r_(r)) < o(r?).
The same argument clearly may be applied to - ¢, yielding
2
I (-5(r)) + J (- _(r)) < o(r).
But since the surface entropy flux is balanced the left-hand sides

of the last two inequalities are equal in magnitude and opposite

in sign; therefore
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. 2
I (B(x)) = d (7 (r)) + o).
C O
If we divide by Wrz and use the above area estimates we obtain

3 (Bx) I (T (6)
A T Al (0)

since the 1limit on the right exists so does that on the left and

+ o(1l)

Jﬁ(?é:t) = j(?f,;!l,t) .

o

Lemma 3: There exists a vector-valued function j(-,t) 92_63

such that
J(x,n,t) = j(x,t)-n

[
for al xe@® and any unit vector n.
1

(4
Proof: For any xe@B we extend the function j(x,:,t) to the

entire vector space as follows:
oW
iGwt) = [uliEre . w#Q

j(x,0,t) = O.
It suffices to show that the function j(x,:,t) is linear, for
we may then appeal to the familiar representation theorem for
linear forms to deduce the existence of i(§ﬁt)' Clearly the
extended function Jj(x,:,t) is homogeneous; we have only to

show that it is additive.

Trivially
J(x,uty,t) = j(x,u,t) + j(x,v,t)

if w and y are linearly dependent. Suppose u and Vv are

linearly independent. Let us fix & > O and consider LU the

~

plane through x with normal uj T > the plane through x with normal

~

v; and L the plane through x - &(u + v) with normal u + v.

+v °
Consider the solid (&) bounded by these three planes and two

planes parallel to u and v and each a distance b from x

;The improvement of the classical proof of Cauchy's Theorem of
which this is a minor variation is due to W. Noll.
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(see Figure 7), and let b and & be sufficiently small that

G(8) is a subbody. Then
0Q(8) = U+ V+W+ 3 + G,

v Tatv respectively, and &

~

where W, Y, W are contained in T
and ¢ are the parallel faces; then U is oriented by u, ')/'by
v,and W by -u-yv. If € = e (6) denotes the area of W it is a

~

simple exercise to show that

A(Y) = Ta+ wl €2

V(Q(s)) = 2bA(%) = 2bA(G)= edlu + v/,
and of course €(6) = 0(§). By the Second Law
. e
St(Q(é)) z Jt(éa(é)) + Kt(CQ(é),CQ(é) ) ;
and, since ét(d(é)), Kt(&(é),a(é)e), Jt(S), and Jt((,';) are all

0(6) (see Axioms 5 and 8), this inequality implies

T (W) + Jt(V) + J (W) < o(d).

Thus :
: lul J. (u) |v] g (1) I (w)
t + t + < o(l)
o+ w[ a(u) " Ju+yl a0 AT
and taking the limit as §-—~0 we arrive at
|ul u |v| ~u-v

Te+ ol 3T * Tgv gl 3% TT B+ Il ) <O
or, as Jj(x,.,t) is homogeneous,
j(x,u,t) + j(x,v,t) + j(x,-u-v,t) < O.
Since xtd®B we can carry out the same construction for -u and -y,
which yields the same equation with reversed signs on u and V.
However, the definition of j(x,w,t) and Lemma 1 imply that
jx,w,t) = -j(x,-w,t), and hence

j(xut)+3(xvt)+j(x -u-v,t) >
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Figure 7
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The last two inequalities imply that
jlx,u,t) + jlx,v,t) = -j(x,-u-v,t) = j(x,uty,t);
and the proof is complete.

o .
Lemma 4: For any xe@ the vectors j(x,t) and g(x,t)

are linearly dependent.

Proof: Assume Jj(x,t) and g(x,t) are linearly independent.
By hypothesis (ii) gg(§dt) is either (a) positive for all & or

(b) negative for all £ . Assume (a) holds. Then
q(x,t) °n

= . 1
FTE—ETTEZZ'O for all n not orthogonal to ilx,t). But for

any n in the span of j(x,t) and g(x,t) that is normal to

g(?\(,;t) ‘I,}, . . .
g(x,t) + j(x,t) we must have ET§"ET”H < O, which is a contradiction,
~ ~ P A

A similar argument applies to case (b). This completes the proof
of Lemma 4.

- The proof of Theorem 13 follows at once from Lemma 4, Indeed,
Lemma 4 implies the existence of a non-zero (possibly infinite)

[+

function ¢(.,t) on (B such that

3 —_ _.__._:.L_._..
2(§;t) = @(i;t) g(?&,t)

whenever g(g,t) # 0; and this function clearly satisfies @(§}t) =
Qg(fﬁt) for almost every {gé (with respect to Qt).

Thus we have established conditions under which Jt assumes
the classical form for entopy conduction. The fundgmental
assum§£ion was that Jt is balénced. Unfortunately, assuming

that the radiative entropy flux K is balanced does not suffice

t
to reduce the radiative temperature to a single field. Indeed,
if Kt is balanced we may apply the analog of Theorem 6 to show
that Kt(@,@?) is described by a single density k(-,t); but it

does not follow that there is a single temperature field relating

lRecall our agreement, in the discussion preceeding Theorem 15,

R S ; - :
that = Qé(iﬁt) q£(§,t) at a point of density of J_ and Q.
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k(-,t) and the corresponding density for Ry, r(.,t); this

requires further assumptions. One such assumption is that there
be no internal radiation. We prove below that this implies balance
of radiative entropy transfer and guarantees the reduction to a

single radiative temperature field.

Theorem 19: (Existence of a Single Radiative Temperature

Field) Assume there is no internal radiation. Then for every

subbody Q r(x,t)

Kt (Q,CQe) = Ia .G_E,_t-)_ av (;5),

]

where r(x,t) r (x,t) and ©(x,t) =6 (x,t).
Proof: As we saw in Section 3 the absence of internal radi-

ation implies

R (®,Q) =0

for every subbody Q and 0€ENQP). Since Kt(',Q) << Rt(-,d) by
Theorem 10, the above relation must also hold for Kt(-,&) and,
of course, also for Kt(-,Op). Thus we may conclude from the
identity

K, (?,0°%) =K _(0,0°) + K _(F,B°)
that ‘
K (P05 = Kk (6%
for every @PeB(Q). This result, when combined with Theorem 12,
yields the desired result.

Of course there are more general conditions under which
there is a single radiative temperature. Suppose Kt is
balanced. Any condition which guarantees that the measure
generated by the function CQ—'Ké@,@?) (see the argument in the
appendix) is absolutely continuous with respect to the measure

similarly generated by Q~*Réa,ae) will suffice to define a

single radiative temperature.
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As noted, lack of internal radiation implies that Kt(-,Q) =0
for any subbody @ and hence trivially it implies that Ky is
balancéd. Thus if we also assume that .Jt is balanced it follows

that Mt ‘is balanced and from Theorem 9 we obtain

Theorem 20: Assume that there is no internal radiation and

that the surface entropy flux is balanced. Then the entropy

production N, is s-additive on u4{8.

t

Theorems 18 and 19 now imply the main result:of this section:

the generalized Clausius-Duhem inequality.

Theorem 21: (The Generalized Clausius-Duhem Ineguality)
Let Jt obey the conditions of Theorem 18 and suppose that there
is no internal radiation. Then for any subbody Q
J . ( J qalx,t) 'n () j r(x,t) 0
s(x,t)dv(x) >| —77—— da(x) + —v av(x) .
a ~’ ) p(x,t) a ©(x,t)
Of course, under suitable smoothness assumptions this becomes
: g .

éZ_diV(_-(-p') + 5 -
The relation in Theorem 21 differs from the usual Clausius-
Duhem inequality only by the presence of separate radiative and
conductive temperatures; We believe the assumption that
the two temperatures coincide should be regarded as a consti-
tutive assumption, rather than as a general axiom. In fact it can

1

"be shown " that for a very general class of materials the

modified Clausius-Duhem inequality requires the two temperatures
be equal. As an illustration of the conditions which lead to this
result let us consider the special case of a simple heat conductor
(without memory). Such a material is defined by two constitutive
assumptions. The first is that there is no internal radiation

and that the conductive temperature is independent of £ at

%

lgurtin and Williams [1966-2].
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each point; therefore, in the presence of sufficient smoothness,

the relevant forms of the first two laws are

. r
s > div(=) + 5"
The second constitutive assumption is that there exist

four response functions, ﬁ,é,g, and 8 ,Which give the heat
flux vector g, the specific internal energy e, the specific
internal entropy s, and the radiative temperature © at any
(§;t) whenever the conductive temperature . | : =
¢ and its gradient
' g = gradyp

are known at (x,t):

qx,t) = glolx,t), glx,t),x),

elx,t) = &lolx,t), g(x,t),x),

s(x,t) = S(o(x,t), g(x,t),x),

e(x,t)

8(o(x,t), glx,t),x) .

We shall assumé that the response functions are defined and
of class Cl on R X 7”x<§ , where R is the extended real number
system with zero deleted and 7" is the vector space associated
with &. |

Given a class C2 £ime-dependent conductive temperature

Qo
field ¢ on 03 for all time we can compute the fields g,e,s and ©

by means of the foregoing constitutive equations.and r by means
of the First Law; the ordered array [w,g,e,s,e,r} so defined will
be called a process. The above constitutive assumption is
compatible with thermodynamics if every process satisfies the
Second Law,

We call the linear transformation K(¢,g,x) defined by

K(p,9,%) = 3_4(p,9,%)

)
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the conductivity tensor (corresponding to (¢,g,x)). Of course

bg denotes the gradient with respect to the vector g computed

holding ¢ and x fixed.

Theorem 22: (Reduction to a Single Temperature) Let the

simple heat conductor described above be compatible with thermo-

dynamics and assume that the conductivity tensor is never skew.

Then the radiative temperature equals the conductive temperature

in every process, i.e.,

A
O = e(@:g:f}\{)
for al VeR, ge?”, geé .
Proof: We choose ((po,go,ggo)e Rx VYV x B arbitrarily. It

is a trivial matter to exhibit a time-independent conductive

temperature field ¢ such that

o(x)) = ¢, gradp(x. ) = g,
and
. 5 .
grad®o(x.) = A,

~

where A 1is an arbitrary symmetric tensor (linear transformation).
By hypothesis the (time-independent) process {0,q9,e,5,0,r} generated

by ¢ must dbey the first two laws; thus

I

divg + r o,

-
le(@) + < 0,

oIx

and therefore, eliminating r and evaluating the resulting inequality

at Eo’
11y, 1A .
((po - 9(,}50))dlvg(x~o) - 2 g(@o’ﬂo,?fo) gO < o,
%
where1

. A
d1Vg(§o) = %,g(¢o:§o’§o) + tr(J:fa((po’go’%o”«\) + tr(axé(wo’go’ﬁo))

and

o>

x ).

6(x,) = 6(p,,9,,%,

1
Here tr  denotes the trace operation.
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Since §(¢o,go,§o) is not skew, divg(go) can be made to take
on. any given value by proper choice of Aj; if ¢o were not
A
equal to 9(¢o,go,§o) we could choose A so as to violate the
above inequality. Therefore
= 6( )
Po = F4P5095:%

and the proof is complete.
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Appendix
In this appendix we shall prove the following

Theorem: Let « be an s-additive set function on MB

and suppose that

la(@) | < xv(a)

for all (Z€‘A4@ and some real number k. Then o« is the

restriction to J4¢;of one and only one measure o oOn

B(03) with

[a(P)| < xv(P)
for all @PeB(A).

Proof: Given any set A, let A denote the closure of its

interior: -

A=A,
Further, let P denote the set of all finite unions of half—0peh
rectangular prisms of the form
(x| al < &t g_bi, i=1,2,3},
and let
R = {(A] A =BNAB, BePk]}.
Clearly R 1is a ring. Moreover, by Axiom 1,
AcR > Ac M5
Next, we define the set function & on R by
a(a) = a@®, |

At
(44

and we let I&I, , and & denote, respectively, the total,

positive, and negative variation of & (see Dunford and Schwartz
[1958], pp. 95-99). The function Q and (hence) the functions IQI, 6\['-, and

A- C . cys . .
o are finitely additive; indeed, if A,BcR are disjoint, then

>l

and B are separate and
&(awB) = «(ATB) = «@EWB) = o(E) + «F) = &(a) + &(B).

Further, if Aie R, i=1,2,...,N, is any finite collection of
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disjoint subsets of AcR, then

N N N N N
Zlaan| = 2 la(B) | < 2ZkV(E)) = 2. kv (a;) = kv( UA)< kvV(B);
i=1 * i=1 i=1 i=1 i=1
thus
|8 (8) < xv(a), & (a) < kv(a), & (a) < kv(a),
for all AeR. Consequently, given any monotone decreasing
[eo)
sequence {A_} in R with N A = # we have
n n=1
lin |8 (3 ) = lim 8{+(An) = lim & (a) = O;
n — co n — 00 n —

and this in turn implies (Halmos [1950], p. 39) that |&], a*, &,

and (hence) & are countably additive and bounded on [R. Next,
since the o-ring generated by R 1is B(®B), we may conclude
from a well-known theorem (Dunford and Schwartz [1958], pp. 134-
136) that &, &+, and @& have unigue countably additive exten-

~

. ~ ~F ~— ~t ~a
sions @, @ , and & to B(B). Moreover «a = « —. a and

@ oo

& (a) = inf 2. o (), & (a) = inf 2 & (a)
n=1 : n=1

where each infimum is taken over all sequences {An} of sets in R

whose union contains A. Then, since
® (e}
A+
2.8 (m) <x 2V,
n=1 n=1

we must have

(0 0] (0 @)
inf Z‘&+(A ) < k inf ZV(A) = kV(A);
n=1 n n=1 n

thus E?(A) < kv(a). similarly o (A) < kV(A), and hence
|a(a) | < xv(a).
To complete the proof we have only to show that
a(@) = a(a)
for any (e J/ICB . Given any A e M® we have the inequality
la(@) - a(@)] < |a(@) - a®d)]| + |alB - a(@) |
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which must hold for évery AcR., Now it is a consequence of a

well-known resultl that given any € > O we can always find an

AcR such that
la(@) - a®d)| < e, V(QAad) < g;
and this implies
l2(a) - al@)] < e+ |a® - al@)].
Next, if we denote the‘0peration of relative complementation
(subtraction) in the Boolean algebra cﬁﬂs'by N ' ( d.e.
ANy = @A¥°) then, since
«(B) - o(@) = a(E\Q@) - «(Q\E),
it follows that
la@) - a(@)] < k(v(i\a) + V(Q\7)).
It is not difficult to show that
V(E\NQ) + V(G\D) = v(@an),
Thus |
|a(@) - a(@)]| < € + 2ke
which implies the desired result.
.To establish the uniqueness of this extension, suppose
51,35 both satisfy the conditions of the theorem. Then, siﬁce

they are both volume-continuous, AcR implies

~ ——

o (B) = o () = a(n) = a,(d) = a,(d).
Hence they agree on [R, and it is a classical result2 that they
must then agree on B (@), which is the o¢-ring generated by R.

This completes the proof,.

lSee Halmos [1950], p. 56.

2See Halmos [1950], p. 54.
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