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During the past several years much progress has been made

toward the goal of establishing a general theory of continuum

thermodynamics. Coleman and Noll [1963] have developed a rational

procedure for systematically establishing those restrictions

placed on constitutive relations by the Second Law of Thermo-

dynamics. This procedure has since been applied to various

constitutive assumptions, and the results, for surprisingly large

classes of materials, seem to be in complete accord with physical

experience. As their starting point these studies take the First

2
Law of Thermodynamics in the tradtional form

~ \ edV• = I g-n dA + I rdV,
***• ad. (JL

and the Second Law in the form of the inequality

d
dt

which is due to Clausius, Duhem, Truesdell, and Toupin and usually

referred to as the Clausius-Duhem inequality. Here OL , with

boundary hQ, is an arbitrary smooth subregion of the body; e

is the internal energy density, s the entropy density, 9 the

temperature, q the heat conduction vector, and r the radiation

density. The success of the above mentioned work has established

For applications to simple materials see Coleman and Noll [1963],
Coleman and Mizel [1963, 1964], Coleman [1964-1,2], Gurtin
[1965-1,2; 1967], Gurtin and Williams [1966-1], Wang and Bowen
[1966], and Coleman and Gurtin [1967-1,2].

2
Actually, the above studies include mechanical effects which, for
convenience, we neglect. Thus; here and in what follows we assume
that the body is rigid and stationary.

This postulate, for the case in which q = 0̂  and r = 0, is due
to Clausius [1854, 1862, 1865]; the sur£ace~integral was added by
Duhem [1901] and the volume integral by Truesdell and Toupin [1960]
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that these are appropriate starting assumptions for the study

of constitutive relations, at least for those classes of materials

to which they have been applied. Because of this it becomes

important to develop an axiomatic structure for continuum thermo-

dynamics in which the relation of the above laws to the general

axioms of thermodynamics is brought out. In this work we present

a complete set of axioms, based upon physically acceptable gross

forms of the laws of thermodynamics, which yield appropriate forms

of these laws for continuum physics. In particular we give

assumptions under which these forms reduce to the classical ones

2

above; Of special interest is the fact that the existence of

temperature is seen to be a consequence of the requirement

that the entropy flux into one body from another must vanish

whenever the two bodies do not exchange heat.

We attempt to maintain throughout the complete rigour which

we feel is necessary in any work of this sort. We make no hidden

assumptions of smoothness or of any other property; the assump-

tions necessary for any result, beyond those contained in the

axioms, are always stated as hypotheses for the theorem. It

also is to be emphasized that nowhere in this work do we find it

necessary to consider quasi-static processes, adiabatic processes,

reversibility, or any such classical notions. We need to con-

sider only a single body in a single !lprocesstT to introduce

all of the necessary concepts and to demonstrate all of our results.

Aside from the axioms which state the First and Second

Laws of Thermodynamics, the basic axioms of the work are those

For an axiomatic treatment of classical thermodynamics see Arens
[1963] and Giles [1964].

Roughly speaking, the assumptions are that there be no internal
radiation and that the flow of entropy across any surface be
balanced.
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typical of continuum physics; first that any physical law postulated

as true for a body be true for any *!body-like!» part within the

body, and second that all physical quantities defined on such

subbodies be extendable to measures.

The plan of the work is as follows: In Section 2 we consider

the technical question of which sets contained within a given

body are to be considered for the theory. We introduce the

notions of internal energy and heat flux in Section 3 and state

the First Law in Section 4. Consequences of the First Law are

then found and the classical reduced form of this law deduced.

In Section 5 we introduce entropy and entropy flux in a manner

paralleling the earlier treatment of energy, and in Section 6 we

lay down our version of the Second Law. This is then shown to

imply the existence of temperature and to lead to a reduction

of the expressions for the entropy flux and, in Section 7, to

certain heat conduction inequalities. In Section 8, we consider

assumptions which are sufficient to reduce the Second Law to

the Clausius-Duhem inequality.

Many of the results in Section 4 are analogs of, and based

upon, Noll's treatment of continuum mechanics; indeed the

realization that measure theory is an appropriate vehicle for

the statement of the fundamental axioms of continuum physics is

due to Noll.

Although we here treat only the case of non-deforming bodies

and hence ignore mechanical effects, it is clear that all of our

basic arguments would remain valid for the case of deforming

media. Aside from certain obvious alterations to account for the

^ [1959, 1963, 1965].
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kinematics, the only change we need make is to alter the First

Law to read

^ ( E + K) = H.+ W,

where E is the internal energy of an arbitrary subbody CK 3 K

the kinetic energy of Q. , H the heat flux into (X from its

exteriorj and W the rate of mechanical work done on Q . To

get all of our results it is then sufficient to assume that the

mechanical work W takes the classical form.



As we treat here only rigid immobile bodies we dispense

with the usual definition of a body and regard it merely as a

standard region in Euclidean three dimensional space q> . We

then consider subbodies of the given body as members of a class

of standard subregions of the body. To fix notation let us here

point out that we use the term standard reĉ ioii for the closure

of an open set Q whose boundary is the union of a closed set of

zero area and a finite number of class C two-dimensional mani-

folds , each of the manifolds having the open set Qt on just one side,

We reserve capital script letters for subsets of ^ and
o

denote, for GL c: £ , the boundary of 0. by d& 3 the interior by Q. ,

and the closure by OL # Given any set d c ^ we write

ae = |^a
and call # e the exterior^ of Q in ^ .

Henceforth we shall consider a single, fixed bodx Go .

Given any other set Qc(B we denote the rej_ativ£ extê rior̂  of d

in (B by

a b = <8- a .
Of course

a e = abuc8e.
We shall consider a class <X{ o f subsets of 65 ; elements of MJ&

will be called subbo^diej^. The structure we require on M.™

(which imposes certain smoothness requirements on (3 ) is given

in the following axiom. For convenience we consider the null

set 0 to be a standard region.

•'"Noll [1959] .



Axiom !L: The set JA has the following properties:

(i) every elenient of M& is. IL standard region;

(ii) OLeM® implies (jP

(iii) CD.CeM0 implies

(iv) if C JLS SL solid circular cylinder or a. solid

J

prism in $ then Cn<£>

(v) if d e M and ^ is any regular surface included

in dGl there exists ja monotone sequence { Q } oj£ elements ofCOCO
, a c a , such that n d = jrf :

n n = i n

(vi) îf OLe JJl and <a _is, any vector, then (X+ ^

contained in B̂ implies (Jk + a. e JA •

The conditions (iv) and (v) ensure that M has sufficiently

many elements to generate the Borel sets of (8 and of any

surface SO. with d e cX\ . The other conditions guarantee a

structure on JA sufficient to make meaningful all operations

carried out in what follows. Note in particular that 0, <B e J/l •

The operation appearing in (iv) occurs sufficiently often that

we introduce a special notation for it: for any sets 3,Q

in ^ we define

3AQ = 5 fl Q.

Then it is clear that GL,Ce M® implies O-ACe M & .

We will say that two sets 3,Q are separate

if <*AQ = 0; it follows that two subbodies Q,C are

separate if and only if (afX8) cz(^andC) .

One may define^ in the manner of Noll [1963, 1965]

a material universe as a collection of bodies each of which has

the properties of 6$ . This, however, yields more structure than

is necessary for the theory; it suffices to consider, besides



the elements of M®, only the exterior, .(J8e, of $ . More

precisely we define J[A , the n^ter^al un/iverse^ for (o, by

M = { £ |A€c>U*or ^ejtfi.

The structure imposed on iM yields a corresponding structure

on M : $ > 0e J/f ; fie J/? implies $e€ c/Mj and fi^^ej/t

implies both j91U^2€ Jt>f and *]A*2
€ ̂ # Of course

any element in oW is either a subbody or the union of a

subbody and (8 .

We shall be concerned with real-valued set functions defined

on jJi®* or JJl • We say that such a function a is

addltive^or simply sraddj:t#ive^ if

for every pair of separate elements (31 ̂C in the domain

of a.

Fundamental to this work is the assumption that such

functions may be extended to the class of all Borel sets of ® .

For convenience we shall refer to these sets as parts. Given

any part $ we denote the Borel sets of £ by £B ( fl ) . We

shall use the term meajsurê  exclusively to denote finite real-

valued Borel signed measure. Except for this convenience we

shall use the standard definitions of measure theory; these and all

uncited results used herein can be found in the book of Halmos

[1950]. We use « to denote absolute continuity and

write ix = ju - yT for the Jordan decomposition

of the measure /i. We shall use the terms Malmost every",

"almost everywhere11 and nessentially!! to denote "except on a

set of volume (area) measure zero n (the choice between volume

With U as join and /\ as meet both M® and JA have the
Structure of a Boolean algebra.
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and area will be clear from the context); in all other cases we

specify the measure involved. We reserve V for Lebesgue

volume measure in Q and A for Lebesgue surface measure on

manifolds in $ . The only non-standard measure-theoretic concept

we need introduce is the following: we say that a measure \i

foljLows a measure v if

JU+ « V+, \f « |T;

that \i ogjooses, v if

+ - - +
[i « V , IX « V .

Clearly ju follows (opposes) v if and only if any Hahn decomposi-

tion for v is also a Hahn decomposition for \i (-ju) ; or if

and only if \i « v and the Radon-Nikodym derivative -r^

is essentially positive (negative).

We shall reserve the term surface for the (relative) closure of

an oriented class C two-dimensional differentiable manifold or

the finite union of such (closed) manifolds. The boundary of a standard

region is taken to be oriented in the positive sense with respect to

that regionj i.e. with the orientation corresponding to the
«

external normal vector. A surface contained (in the sense

of set-inclusion) in another surface is a positive segment of

that surface if it has the same orientation; if it has the

opposite orientation it is called a n^g^tdv^ ê̂ mejot̂ . We define

in an obvious manner the positive and negative normal vectors

to a surface; if $ is an oriented surface, then -j$ is the same

surface taken with the opposite orientation. A point x

in a regular surface JO will be called a reguj_,ar ĝ oinjt of Jo

if & is smooth at x. A surface $ contained in £8 is called a

material, §Ji£j£ii£JL ̂  ^ ^s a positive segment of the boundary of



a sui

9

lbbody. If the (relative) interior of a material surface to

is disjoint from d<B, then J$ is said to be ir^te^io£ t£, <%.

If JO is a positive segment of both dfl, and S ^ , where

$^ 3&~€M* then J6 is also a positive segment of £>($ A$9)»

We shall consider a fixed time interval, i.e., an interval of

the real line, and shall denote points of this interval by t. In

every assertion involving ..functions of time we shall imply, without

so stating, that the assertion holds for every t.



10

We now assume that we may associate with the body <S at

any time t a scalar Et(<B) which represents the internal energy

of the body at that time, and a scalar Ht((B, (B ) which represents
- f>

the flux of energy into (B from its exterior Co . The First

Law of Thermodynamics for the body (8 is the assertion that the

time rate of change of internal energy of <3 equals the amount of

heat that flows into (B from its exterior:

™ Et((B) = Ht(#,(8
e).

The basic continuum hypothesis is then that E (Q) and H (#,ft )

are defined and satisfy this relation for all subbodies Q. con-

tained in (8 . Beyond this we assume that we can distinguish not

only the heat flux H, (<3,Q ) into 0- from its exterior but

also the heat flux H,(G^&) into & from any other element

& of the material universe, and that E, (•) and H, (•*$) are

extendable to measures. Further, we make a restriction on E

and H, which may be interpreted as requiring that a part of <3

of arbitrarily small volume must have arbitrarily small internal

energy and can accept only an arbitrarily small amount of direct

radiation. Correspondingly, we assume that an arbitrarily small

surface of contact can suffer only an arbitrarily small amount of

conductive transfer.

Therefore, we assume the existence of two set functions:

Efc, which assigns to each part (P in IB (03) at any time t a

scalar E. ((P) called the internal energy of <? ; and HL,

which assigns to any &e Jtf and any part {P c^ ^ scalar H. (<?,$),

the heat flux into (P from $.
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Axi1om 2\

(i) E^*) is a measure on IB (©) :

(ii) the derivative Et((P) = -^£
 E

t ^ exists for each

(PEB(<8);

( i i i ) there exists a, scalar a(t) jsuch that

|Et(CP) | < a(t) V((P)

|Et«P) | < a(t) V«P)

for a l l (pe& (<8) .

Clearly (i) and (iii).. imply that the restriction of Efc

to JA is s-additive.

It is possible to state Axiom 2 in a somewhat weaker manner.

First, if E is assumed defined, s-additive, and compatible

with (iii) on M then by the theorem in the Appendix it can be

extended to a measure on B (CB) , and this measure has property

(iii)... Similarly, if E is assumed to exist for all Q.eJi

and to obey (iii)2, it can be shown to be s-additive on M and

hence also extendable to IB (<8) as a measure. Alternatively, since

|E ((P) | < a(t)V((p) implies E « V, it follows from the Vitali-

Hahn-Saks Theorem that if E exists for every (Pe&((&) it

is also volume-continuous. We leave Axiom 2 in its present form

to preserve uniformity with Axiom 3 below.

It is important to note that Axiom 2 implies E (•) is a

measure. Indeed, that E (•) is a finitely additive finite set

function on DB ((8) is immediate from (ii) ; that it is also

countably additive and hence a measure follows from the Vitali-

Hahn-Saks Theorem. Note that assumption (iii) implies absolute

continuity of E, and E with respect to V but is stronger:

it bears the same relation to absolute continuity that Lipschitz

See, e.g., Dunford and Schwartz [1958], p. 158.
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continuity bears to continuity in the case of functions on the

real line. This volume continuity of course rules out point,

line* or surface concentrations of energy in the bodyj by the Radon-

Nikodym Theorem it implies the existence of essentially bounded

functions e(*,t) and e (• , t) on (B such that for every part (P

Efc((P) = J e(x,t)dV(x) ,

E. (0>) = f e (x , t )dV(x ) .

We c a l l e ( x , t ) t he vojjon^-^gec^if^c^ ilifeSXIiSi, J|J2£££K a*- (H>^) ;

under which. e(x,t) = -TT: e (x̂ , t) almost everywherecondit ions unu^i. wmwi. ^ \^_, ̂ y — , ,

.are obvious.

We now make the corresponding assumptions regarding the

heat flux H..

Axiom 3;

(i) For each JSg^ the function H.(•,$) is a measure

on CB (JB ) ;

(ii) for each part (P the function H ((P , •) is. s-additive

on all elements of €/V£ separate from (P*

(iii) there exist scalars ^(t)9 y(t) such that

|H.(<P,A)| <. jS(t)V((P) + y(t)A((?n Sfi)

for all (Pe£B(<3), ̂ €cM which are separate.

Statement (iii) makes precise what was indicated earlier:

that to have heat transfer from £ to ̂

the part (P must have non-vanishing volume (yielding radiative

transfer) or a non-vanishing area of contact with £ (yielding

conductive transfer). Of course H. (•,$) is s-additive on
t

those elements of oA't separate from £.
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An interesting consequence of the assumption that Ht(»5Gl )

is a measure is the possibility of sectioning any subbody Q into

absorbent and emmittent portions. We say that a part (PetB(Q)

absorbs heat from QB if Ht(<P,$
e) >_0, emits heat to Q e

*-\
if H, (®jQ. ) <_ 0. Then as a consequence of the Hahn Decomposition

t

Theorem G. is the union of disjoint sets (X and Q" such that,

with respect to Q e, every part (? c Q is heat absorbing and

every part (?<zQT is heat emitting. Any part (?cQ moreover

admits the decomposition 6> = (P+U(P~, <?+n£P~ = 0, where (P +

is contained in & and hence absorbs heat from (5 and (P~

is contained in d" and hence emits heat to Q. . Of course the

sets Ci and Q " are determined only to within sets of

H. {• ,Gi ) measure zero.

As a consequence of Axiom 3 we have the following centrally

important decomposition theorem for H .

F o r ^^ch &eft[, H, (- ,JS) admits the unique decomposition

where R. (•,£) and Q. (•.£) are measures on £B (J5 ) with the
c x. — — _ _ _ _ __ _______

following property: for any part

Rt((P,*) < fl(t)v«P),

Moreover

We call Rt((P,fi) the radiative heat, flux, into (P from £,.

Qt((Pjj0) the conductive h£gt^ flux into <P from fi.

HUHT LIBRARY
6ARNE6IE-MELL0H UHIVEBSITY
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Before proving this theorem let us note that what we have

chosen at this point to call radiative and conductive heat

flux need have little or nothing in common with the classical notions

of conduction and radiation; we shall see that further special

assumptions are necessary before we can identify them with the

classical forms.

Proof,: If we define Rfc and Qfc as above/ then H.(<?,« ) =

Rt((P, $) + Qt((P, & ) and by Axiom 3 the measures R and Q have the

desired properties. The uniqueness of the above decomposition follows

from the fact that it is a Lebesgue decomposition of H (•,& ) with

respect to volume. This completes the proof.

It is clear that both Rfc(C?,.) and Qfc((P,0 are, for any

part (P of (B y s-additive on those elements of Jtf separate from (?.

A direct consequence of Theorem 1 is the fact that R (. 9 fi )

is absolutely continuous with respect to volume and Q (•9 & )

when restricted to IB (dfl ) , is absolutely continuous with respect

to area. Thus there exist functions r.(-,t)and qft(-,t),

the first defined on $ and the second on h$, such that

Rt(<P,fi) = J r& (x, t) dv (x) ,

Qti(? ,&) = J q&(x,t)dA(x),

for all parts (P c fi . Note that the energy flux H now begins

to resemble its classical counterpart. The functions q and

r., however, are dependent upon $, as indeed one would expect.

The remainder of this section and most of the next is devoted

to the problem of isolating the nature of this dependence,

especially for the most important case: R ( G. 9 Qi ) and

Qt( Q, Q- )when Cl is a subbody. An immediate consequence of the

For an axiomatic treatment of radiative transfer, see Preisendorfer
[1957].
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s-additivity of R.((P,#) is that for any jB-^i^cM. which are

separate

for almost every xe CS.U' $2) .

We may prove for the conductive flux a much stronger result:

that Q, (<?,$) depends not upon $ but only upon the material

surface (in dfi) in question.

Theorem 2: Corresponding to any material surface £j there

exists a. scalar Q, (#?) such that

whenever $ ilL fL negative segment of the surface S& <of

Proof,: We shall prove that given any material surface . j$
o

there exists a measure Q^(-) on IB (̂  ) such that

<4«P> = Qt( <P,A)
for each &€&{$) whenever $ is a negative segment of d$.

Then we simply define Q. (*£ ) = Q? (je5 ) •

Thus let 5̂ be given; since 0 is a material surface there

exists at least one &e</Z for which so is a negative segment

of d$. For any (Pe!B{j$) define

Then Qt(
#) is a measure on B ($ ) ; we shall show it is independent

of J9. Suppose J$ is also a negative segment of (}$, jQe<AJ. It

follows, as noted earlier, that & and fi are not separate and

that S is a negative segment of dOBAjB). Since $A £ is con-

tained in both & and $9 the following lemma then shows

Q t ( ( P / J B ) = Q t ( ( P ^ S



16

Lemma: Let $-. ,&~e M , J9, c JS9, and let (P be a. part

with (P d d$_ PI d$o. Then

,: Since every element of M is either a subbody or the

exterior of a subbody it follows that

the (relative) boundary of d$-,nB$2

is of zero area measure, so we may assume IP (relatively) interior

to d ^ (1 dfl2. Next $ 2 = &1 U (&^A'&2)3 while &1 and

^ -i A *p a r e separate; hence

Ht( £P,£2) = Ht( <P^X) + Ht(CP,fi^ A *2) .

Since CP is interior to S$ fl d$ 2 and thus disjoint from

e A

0̂-. A -fip and since V((P) = 0 it follows from (iii) of Axiom 3

that H ((Pjfi^A S2)
 = °* which proves the Lemma and hence

the Theorem. .
o

It is clear that Q^(-) as defined above is area-continuous
on \&(so)\ hence there exists an essentially bounded

function q.(^t) on $ such that
JO

or, more pertinently.

Qt(S) = [ q (x,t)dA(x) .

Moreover it is an obvious property of Q (•) that XJ^ a positive

segment of &2 implies Q^ (•) = Q (..) on B(\Sj); thus

for almost every xe^t. Finally we note the useful fact that

if so, and JO are positive segments of ja such that
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and A O l M o ) = 0 , t h e n
J £

We shall say that there is n£ internal ^adi^ation if for

every pair of disjoint subbodies (33C

Ht(Q,C) = 0.

If this is true then Rt(^,C) = 0 for every pair of separate

subbodies Q. and C. But by the theorem in the Appendix

R {• ,C) is determined by its values on subbodies; hence

R ((P,C) = 0 for every subbody C and every part (P eB(C ) .

Consequently

R (<P,G.e) = R {&3GL) + R. (tfVBe) = R4- (^®e)tv ' ; tv ' J tv 3 t

for every subbody Oi and hence

Rt(ff,a
e) = J r (x,t)dV(x).

Thus the absence of internal radiation implies that the radiative

transfer R is completely determined by the single density

r .1 This is the case that is usually considered in the classi-

cal studies in continuum thermodynamics.

A more general result of this form is given in Theorem 5.
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IV. Tlie F̂ ir̂ t Law of,

We now make formally the assumption that the First Law of

Thermodynamics holds for subbodies of (33 .

Axj-om £: (The First Law of Thermodynamics) For every

subbody Q

An immediate consequence of Axiom 4 is that the mapping

<3 -*- H t ( O., CL ) is an s-additive function on Jv{ ; i.e.,

Ht( a u c, ( a u o
e) = Ht(Q, a

e) + Ht(c,c
e)

for every pair of separate subbodies QL and C. From this fact

follows a result which may be called the principle of Detailed

Balance. We emphasize that this result has nothing whatsoever

to do with the notion of equilibrium.

Theorem 3,: (Principle of Detailed Balance) . For every

pair of separate subbodies Ot and C

Proof: The proof is trivial when one observes that since

H t "(•,") is s-additive in each argument and 0le = ( Q. U C)e U

ce = (a u o e u a s

= Ht(a, ( a u c)
e) +"Ht(c, ( a u o

e)

=• Ht( a u c, ( a u o
e) + Ht( a,o+ Ht(c,a )

Thus H t(a,C) = -H t(C,d).

We now establish that this result is also true for Q

and hence also for R .

Theorem 4̂ : (Principle of Detailed Balance for Conductive

Transfer) For every material surface $ interior to (3

Q
t
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Pro£f: Since JS is interior to <B , -j£ is also a material

surface. Hence by (v) of Axiom 1 there exist decreasing sequences

{ C?n) and { Q } of subbodies such that so is a positive segment

of S Q for each n^ -^ is a positive segment of S Q. for

each n, and

n an - n n . i .
n=l n=l • .

Moreo^r we can choose { QL^} and ( Gl^} such that for each n

GL arid Q, are separate. By Theorem 3, then,
n n

or equivalently, if ^ n = S dn fi 5 GJn and sSn is taken to

have the orientation of &,

00

Since fl A^ ~
n=l

as n -*- CXD . Thus to complete the proof we have only to show that

Rt(0n, 6n)-0, V^n'V" 0'

as n-^oo. But this follows at once from the inequalities

|Rt(Qn, dn) | <; a(t)V(Qn),

|Rt(Qn, a n ) | < a(t)v( a n),

of Theorem 1.

Since for every pair of separate subbodies OL and C

Ht(Q,c) = Rt( a,O + Qti£),

where JS is the (possibly empty) positive segment of Stt for

which /§ = hOi fl c5G, Theorems 3 and 4 imply
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Theorem 5̂ : (Principle of Detailed Balance For Radiative

Transfer) For every pair of separate subbodies (X and C

Since

Rt(a,a
e) +--Rt(c,c

e) = Rt( auc,( a u o e )

X\. V Uc. • \~J J *^ j \ t V v_y • >»^— J

for every pair of separate subbodies G> and C, we conclude

from Theorem 5 that the mapping (& -> R- (Cfc ̂ Q. ) is s-additive.

This conclusion the fact that |R ( a, QLe)\ < /?(t)V(Q) and

the theorem in the Appendix imply the following striking result.

Sfe§2£SS. &: There exists â  function r (• 31) on_ 03 such that

for every subbody d

Rt(<2, a
e) = J r(x,t)dV(x) .

Hence there exists a single function r(•yt) whose

integral yields the volume-continuous part of the fight-hand

side of the First Law, We remarked at the end of Section 3

that in the absence of internal radiation R (G..&e) = R^(^?,0e).
t * t 3

Efenee in this case r (#,t) = r(-5t) almost everywhere. This is

of course not true in the presence of internal radiation.

Ci
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Our next objective is to establish the counterpart of

Theorem 6 for Q . With this in mind we now introduce certain

auxiliary notation. For any well-behaved monotone sequence
oo

{A. } of sets which tend to the single point x (i.e. {x} = H A ) ,

and which are measurable with respect to some measure JX, it is

well known that 1 fd/u
Â

f(x) = lim r~z—

n —> CD ^ n

for almost every x, provided only that f is ju-integrable.

We shall apply this result to the surface integrals that

define Q . (it is not difficult to show that the sequences

of sets we shall use are sufficiently well-behaved.)
o

Given a point xe (B and a unit vector A^ . • ;
we define ^(XjA^r) t o b e that circular cylinder

centered at x with radius r, axis parallel to A^ and

height 2r. Now suppose x is a regular point of the material

surface $ arid let r̂  denote the positive unit normal to jS at

x. We define

j&(r) = $ n Ctx^r) ,

letting the orientation of suit) agree with that of J$ . Since

JO is smooth at x it is clear that for all sufficiently small r

) intersects the boundary of Ctx^n^r) only on the curved

segment, i.e., y^e [je$(r) fl SC(x,ii,r)J implies | (̂  - x) -nl < r

(Figure 1) . We will call x a point of density of Q. on £ if x
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Figure I
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is a regular point of JO and

Since this relation

holds for almost every x€^ and since ^ ( ^ t ) ^s indeterminate

to within a set of measure zero? we may suppose q,(*,t) to be

such that the above relation is valid whenever the limit on the right-

hard side exists. Then Theorem 4 implies that if x is a point of

density of Q on $ , it is a point of density on ~$ and

We now have sufficient apparatus at hand to establish the

counterpart of Theorem 6 for Q . This, a direct analog of a

result of Noll [1959] regarding contact forces, is central in

the theory of contact effects and provides a basis for a result

usually assumed in the classical literature. The proof below

is essentially that of Noll.
o

Jfec££§SI Z: For every xe <B and every unit vector ri

there exists a. scalar q(x,n^ t) such that for any ma terial

surface j$ interior to <S

] q(x,n(x),t)dA(x),t ]
where n(x) jjs the positive unit normal to j$ ajt x. Further,

the function q(x,#,t) satisifes

q(x,n,t) = -qfxj-rijt) .

IVroô f: Recall that for every material surface JO interior to 03

Qt(*5> = J q^(x,t)dA(x)

and that almost every xe^3 is a point of density for Q on ^ .

Thus it is sufficient to show that for every (x.n.t) there

exists a scalar q(xJ,nJ,t) such that for any j£ interior to (B
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q (x,t) = q(x,n(x) , t)

whenever x is a point of density for Qt on JO .

Choose.(x^n3t) arbitrarily and consider the family Q of

all material surfaces through x with positive unit normal n

at x. If x is not a point of density for Q. on any jSeCl

we choose q(^n^t) arbitrarily and set q(x,-nJ,t) = -q(x,n,t).

If it is a point of density for Q on some surface j£->eQ

we set q(x,n,t) = an (x.t) . We need now only show that if it

is also a point of density for fO^eQ, then q (x,t) = q (x,t) ,

Let k be regular for both JO and x)~ and consider the

cylinder C(x,n^r) and the surfaces 0^ (r) and so (r) defined

as above. For sufficiently small r let CR. (r) denote the

subbody whose boundary consists of £9, (r) and a positive segment

of (3C(x,ii, r). Let Q (r) be defined in the same manner.

Then we may write (see Figure 2)

(r) + Q(r) + ^(r) ,

(r) + Q(r) + 7

where Q(r) is that portion of "60L (r) flc^ (r) common to the two

subbodies (excluding £5, (r) and j&f2(r)). As r tends to zero

we have the estimates

AWff(r)) = Trr̂  + o(r 2) ?

A(3a(r)) = o(r
2),

V(Q (r)) = o(r2)

for a = 1,2.

Using the above decomposition of ~bQL (r) we now apply the

F i r s t Law of Thermodynamics to G? (r) :
9
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Then by the above volume and area estimates, together with the

boundedness properties of Efc, Rt, and Qfc given in Axiom 1 and

Theorems 1 and 2, we have

Qt(^a(r)) + Qt(QU)) = o(r
2),

and on subtracting this with a = 2 from the same expression

with a. = 1 we arrive at

= o(r2) .

22
Thus if we divide by irr and use the area estimate we conclude

since jc is assumed a point of density for Qfc on each of

x#. and $2, this yields

(x,t) = q^ (x,t)

when r->-0^ which completes the proof.

We have now established the classic starting point of the

theory of heat conduction. A result proved by Cauchy [1823,1827] puts this

in a somewhat more familiar form provided the function q(»,rijt)

is continuous for every n. In this instance one has the

existence of a vector-valued function c^'^t) such that

o

for all xe(B . (A stronger form of Cauchy1 s theorem is given

by Gurtin, Mizel; and Williams [1967] .)

We summarize our results in the following theorem.

Theorem 8/. (integral Form of the First Law of Thermodynamics)
o

For every subbody G? <= <B

Je(x,t)dV(x) = fr(x,t)dV(x) + j q(x,n(x) , t) dA (x) .J
If the function q(• ,n, t) ĵ s continuous on 03 for each n, then
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?4(x,t)dV(x) = \r(x,t)dV(x) + J a(x, t) -n(x) dA (x) .

a a ha
The local form^

e = r 4- div Q,

follows under obvious smoothness assumptions.

Our theory of the First Law of Thermodynamics is equivalent

to the mechanical theory as treated by Noll [1959] (except that

his theory necessarily treats vector-valued measures); in his termin-

ology one would write **&(•) in place of H (• , GL ) ; H$tf)

corresponds to his nsystem of forces11 while our E
t(

-) corresponds

to his linear momentum.

Our added assumption that H,((P/) is s-additive over cAt

allows us to remove one of his axioms (the Lemma to Theorem 2 is

his Axiom C.3) and to remove a-further assumption he must make

(his assumption (b) on p. 278; cf. our Theorem 6) to derive the

classical form of the balance law.
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The basic form of the Second Law of Thermodynamics

is that the entropy of an isolated system is always non-decreasing

in time (modulo an interpretation of the terms "system" and

1'isolated11) • This suggests that if a system is not isolated it

must in some sense exchange entropy with its surroundings. Hence

for our work we are led to postulate the existence of a scalar

M.((B,(Be)^ the entropy flux into <B from 66°, which is analogous

to the heat flux, Ht(<£,tfB
e). Then if Sfc((8) is the

entropy of (B at time t, its rate of increase must always be

greater than or equal to the influx from (53 :

^ st(<B) > Mt(d3,0B
e).

Moreover M ((B,<B ) must be zero when (B is isolated, which in

our formalism is interpreted to mean

Ht((?,(B
e) = o

for every part (P of 03 . With this condition we adopt the above

inequality as the appropriate form of the Second Law (Section 6).

We then assume (i) that S ($) and M ( Q , Q ) are defined and

satisfy the Second Law for every subbody G> of (8 ; (ii) that

we can distinguish not only the entropy flux M,(& , Q ) into 01

from its exterior, but also the entropy flux M .((£,$) into (X

from any other element <fi of the material universe; and (iii)

that S. (•) and Mt( • , $) are extendable to measures.

Thus we assume the existence of two set functions: S ,

which assigns to each (PelB(CB) at any time t a scalar S ((?)

called the internal entropy of (P : and M. . which assigns to

any & e <M and any part (p c £T a scalar Mfc((P,fi ) , the

An interesting interpretation of the Second Law has been given by
Coleman and Mizel [1967] who have shown that when the temporal
evolution of a system of thermally interacting particles is governed
by a system of ordinary differential equations, the existence of
entropy and the validity of the Second Law are consequences of a
postulate of asymtotic stability.



29

rate of gntrogx transfer^ (or entropy flux) from £ into

AxjLom 5̂ :

(i) s t ^ is a measure on IB ((B) ;

(ii) the derivative S.((P) = -rzS.((P) exists for each

CPe/B((B);

(iii) there exists .a scalar 6 (t) such that

|St((P) | < 6(t)V(CP)

|St«P) | < 6(t)V((P)

for all <pe©(<%) .

This is an exact analog of Axiom 2*. hence the comments

following that axiom also apply here. Thus S. is also a

measure on CB (CB) and by (iii) there exist essentially bounded

functions s(.,t) and s (•, t) on £8 such that for any part (P

S (CP) = f s(x,t)dV(x)

s(x,t)dV(x) .

We call s(x.t) the volume-specific internal entropy at (x.t):

under suitable assumptions s (x̂  t) = -r— s(x^t) for almost

every x.

The following axiom is the counterpart of Axiom 3, which gave

the properties of H . Note that although parts (i) and (ii)

are exact analogs of the corresponding parts of Axiom 3, we

here make no boundedness assumption analogous to (iii) of

Axiom 3.

Axj-om 6̂:

(i) For each /) e M the function M (• _, $ ) i§̂  a. measure

on IB ( & b) ;

(ii) for each part (P the function M ( (P 9 •) is s~additive

on all elements of JA separate from G> .
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One can define, just as for H, , an absorbent-emittent

sectioning of any subbody Q. with respect to M. . In the

following section we shall use the Second Law to derive further

properties of M. .
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VI. The Second Law of Sierroodim^ic^s, Existence, of

: A .part (P of: (B is_ t h e r m a l ^ i^gl^ited. from

& e cM Jtt .time t JLf _for each par t <P' c (p

H t( <?',« ) = 0.

This condition, which amounts in measure theoretic terms to

a statement that the total variation of H,(#,$ ) is zero on 0\

presents a very clear physical picture: a part is thermally

isolated from £ if no subpart of it exchanges heat with &.

With this notion the Second Law can be stated quite simply.

£&iSBi Z' (The Second Law of Thermodynamics)

(i) For every subbody Q.

St(OL) > Mt(C?, 0°) ;

(ii) Ĵ f _a part (P Ĵ s themnally isolated from £ e c/Vf

Mt((P, *) = O.-

It follows from the first two laws that if a subbody d is

isolated from its exterior, then

Et(a) = o, st(Q) > o,

which is the traditional form of the first two laws for ''universes'1.

It should be noted that neither in Axiom 7 nor in the remainder

of this work do we say anything about reversibility or irreversi-

bility.

Before we develop the considerable structure induced on the

entropy flux M by Axiom 7 we make several simple observations.

The introduction of the First Law of Thermodynamics allowed us

to deduce instantly a principle of detailed balance for the

energy flux H (Theorem 3), and this led to several striking

results. The Second Law, being expressed as an inequality,

clearly cannot yield so much; in particular balance of entropy
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flux does not seem to be a universal rule. (A simple counter-

example, not strictly included in this theory but nonetheless

relevant, is that of a system of particles at different tempera-

tures radiating between themselves.) We define the njrt gntrogiL

exchange between two subbodies Q and C to be the quantity

Mt(a,o =Mt(a,c) +Mt(c,aj.

If the entropy flux balanced M.(Q.,C) would be identically

zero. Next we define the en£ro££ E£2̂ ii£feiSJi £££§, N t
 by

Nt(fl) = st(a) - M t(a, a>
e).

Then the Second Law implies

N. (C2) > 0

and N.(Cfc) = S.(<2) when <3> is thermally isolated from its

exterior.

It is usually assumed in the literature that N, is s-

additive. Our next result shows that such an assumption is equi-

valent to requiring that M, balance. As will be seen in Section

7, the assumption of balance of entropy flux is at the foundation

of the classical theory of heat conduction.

any pair of separate subbodies Qi and C

Nt( a U C) - Nt(Q2) - Nt(C) = Mt( a,C) .

Proo^f: The above relation follows at once from the definition

of N , the identity

Mt((2, <1
B) + Mt(C,C

e) = Mt( C2U C, ( a.U C)e) + Mt( Q,C)

(c.f. the identity in the proof of Theorem 3), and the fact that

S. is s-additive.

If we take C = Ci in Theorem 9 and use the first part of

the Second Law we arrive at the following upper bound for the

net entropy exchange between any subbody Q. and Qi y its

relative exterior with respect to (B /
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The second part of Axiom 7 is equivalent to the assertion that

M (.,$ ) is absolutely continuous with respect to Hfc (•, fi ) ,

and this observation leads to the following counterpart of

Theorem 1.

Theorem io: For any $e Jtf, M (• , & ) admits the unique

decompos it ion.

Mfc(-, £ ) = K^(- , « ) + Jt(-,« ) ,

where K, (• . $ ) and J (• 3 & ) are measures cm IB ( $ ) with
t t

K.(•3$ ) absolutely continuous with respect to the radiativet

heat flux R+. (• *& ) and J (• y & ) absolutely continuous

with respect to the conductive heat flux Q.(•s &). Moreover

K t ( (? ,fi ). = M t ( (P ~ S J9 , fi ) ,

Jt(<P,A ) = Mt( (pn 5« ,« ).

We c a l l Kfc ( CP , 9̂ ) the £ad la t iv j e

f r o m * i n t o (P ^ J ( CP, J9 ) the £onductive^

.fi i n t o (P .

Proof: Let K. and J, be defined as above. Then M, =
r^^~r^s t t t

K t + J fc. F u r t h e r J (<P , & ) == Jfc ( (P n 5 & ,& ) . , and on IB (d d )

we have

J t ( • , * ) = Mt (• , A ) « Hfc (• , fi ) = Q t (• , A ) .

Hence Jt(-,A) « Q f c ( • , « ) . That Kfc(-,A) «R t(-,fi) follows

in a similar manner. Finally^ since M. (•, & ) = K.(-,J5) ) + J.(*,JB)

is a Lebesgue decomposition with respect to R (• , & ) s it must

be unique.

It follows from Theorems 1 and 10 that K (• , & ) is absolutely

continuous with respect to volume and J. (•, fi ) 3 when restricted

to B(S& ) is absolutely continuous with respect.to area. The

absolute continuity of K.(•, & ) implies the existence of a function



34

k (• ,1) on & such that

Kt((P,A ) - J kfi(x,t)dV(x)

for all parts (Pc j8 , Moreover for any &^3 & 2e M which

are separate

for almost every xeW^U^) .

Next, Theorem 10 and an argument identical to the one used

to prove Theorem 2 yield

Theorem JL1: Corresponding to each material surface & there

exists a scalar J ($ ) such that

whenever j$ jus^ _a negative segment of the surface d& ĉf &

By Theorems 1̂  10^ and 11 there exists, for each material

surface je3 , a function j# (•, t) on ^ such that

and .<5- a positive segment of -O? implies

for almost every xe >e5 .

More important for thermodynamics is the implication of

the absolute continuity of the entropy fluxes with respect to

the heat fluxes, for this implies through the Radon-Nikodym

Theorem the existence of temperature.

Theorem 12,: (Existence of Temperature) For every &

there exists, an extended non-zero-valued function 6 Q (•, t)

on & such that

<P
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for every part (Pc fi . For every material surface $ there

exists an extended non-zero-valued Jupcjtion cp {• ,t) on $

such that
:,t)

Moreover, if j$- Jj3. a. positive segment of ;e$L

(X,t) = (PC (X,t)

for almost every x in sS^ (with respect to the measure Q ) .. — ^ j_ -̂

Of course 0^ and <o are the reciprocals of the Radon-

Nikodym derivatives, respectively, of the radiative and

conductive heat flux with respect to the corresponding

entropy flux: 0~(x,t) is called the radiative temperature

(corresponding to & ) at (x.t) and <a(x.t) the conductive tempera-

tjare (corresponding to J> ) at (x, t) . It is of interest to note

that although zero temperatures are ruled out by Theorem 12,

negative and infinite values of the temperature are possible.

JLjL' The temperatures 0 Q (• , t) jind ^ti^'*^ are

essentially positive (negative) if and only if the entropy flux

M (•,$ ) follows (opposes) the heat flux H.(•,$)••

Ĵ rocxf: We simply note that M,(•,$) follows (opposes)

H (•, $) if and only if K (•, & ) and J (•, & ), respectively,

follow (oppose) R.(*,$ ) and Q (• ,$ ) , and then appeal to the

discussion in Section 1 of the notions nfollow" and "oppose".

Before proceeding further we remark that if $ , 3e J\f( are

separate, then

i / r* ^ i .

at almost every point in ($ U J?) at which r-v,.« ̂  0.

In Section IV we proved that the First Law implied

q,(x,t) = q(x,n, t) and that the radiative heat transfer R (<2,<3?e)

For a discussion of negative temperatures and of the circumstances
in which this concept applies see Ramsey [195 6].
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is determined by a single field r(•,t). This gave us the classi

cal form of the First Law. On the other hand, Theorem 12 implies

that the Second Law can be expressed as follows.

iiL: E.9JL ^X^JOL gubbody Q

Ja i
This form of the Second Law is still far from its classical

counterpart; we cannot, however, reduce it further without special

assumptions. The Second Law by itself is not powerful enough to

imply that <P c (x, t) is independent of A , that K. ( (2, (2°) is

determined by r (•, t) and a single temperature field 6(-,t),

and that <p(^t) = e(*,t) . In Section 8 we will show what

further hypotheses yield these conclusions.

To a person whose intuition is based on the classical theory

of heat conduction the appearance of a conductive temperature

(Pj dependent upon je$ may, at first glance, appear highly arti-

ficial. However, such is not the case. A physically reasonable

example in which the conductive temperature at certain points may

depend upon JD is constructed as follows. Suppose that two

separate subbodies Q and Q of & are composed of a

material which is a good conductor of heat, and that their surface of

contact Jo (taken positive with respect to d Q. -,) is a very

poor conductor in the direction normal to it. In the absence of

radiation a method of treating such a situation would be to
o o

assume that in CSL1 and d 9 the temperature (p is inde-

pendent of J> (<p H (p) , is a smooth function of position, and

obeys Fourier1 s law of heat conduction q = kgrad<p; and that

across jg the temperature is discontinuous and Newton1s Law
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of heat conduction q.n = h(cp0 - <p,) applies. Here k and h

are positive constants, ^ and <p2 are the limiting values of
© ©

<p as je5 is approached from G? and CB2, and n is the

positive unit normal to dC^. Then within our framework <p

would be independent of J within Q± and Q^P but for points

on A$ we would have <p = (p^ and <p = oj thus in this

special theory <p depends upon êf. In view of the above example

we are led to regard the hypotheses which yield classical heat

conduction and a single conductive temperature field as a consti-

tutive assumption rather than a general axiom.

Note that in this example the entropy flux across JS is not
balanced. Cf. hypothesis (i) in Theorem 18.
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VII. Heat Conduction Inequalities

In this section we shall examine some restrictions imposed

on J, by the Second Law. With this in mind we now lay

down

Axiom 8_: There exist scalars 6 (t) , e(t) such that

|K t(6>, « ) | < 6 ( t ) v ( ( P ) , | J t ( 0 \ & ) I < e(t)A((pna«),

for any &eM and <pe1B(&h) .

Ki. (•, & ) and J, (•, $ ), respectively, have been shown to

be absolutely continuous with respect to V and A; Axiom 8

reinforces this by requiring a Lipschitz-type continuity.

In Section 4 the First Law was used to show that Q. (j$) =

.-Qt(->e§) for any material surface *& . For J we shall

prove the corresponding result: J (̂  ) + J.(-j£) <. 0; but we

are able to do so only under certain additional smoothness

assumptions. Moreover the result that q« is a function only
JO

of the normal vector to $ at a given point also does not carry
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over to j,,: the corresponding result is again an inequality and

again can be obtained only upon further hypotheses.

In analogy to the convention established in Section 4 we

call x a jDoinjt of dens^it^ of J on j& if x is a regular

point of A ,

*•> r

and, in addition,

provided x is a point of density of Q, on £ . As before,

we assume without loss in generality that if x is a point of

density of Q on JO 3 then x is a point of density of J

on $ whenever the above limit exists.

9 9

Let jo and Jo~ be two surfaces through a point x such

that x is a regular point of each. Suppose further that j£

and j&ry are tangent at x and have opposite orientation in the

sense that if n is the positive unit normal to j&. at x̂ ,

-ri is the positive unit normal to jo~ at x. Then j$^ and

je£2
 a r e said to be comjgâ tib̂ lê  at x if for r sufficiently

small there exists a subbody C£(r) such that

B ) = 5(r) + j^(r) + J2 (r) ,where 5(r) is a positive segment of SC(x_,n^r) and j$ (r) =

jSa 0 CCx^n^r) with orientation induced by jS (Figure 3).

Here, as before^ Cjx^n^r) is the cylinder centered at x with

axis ^ radius r, and height 2r. Thus, roughly speaking,

two surfaces are compatible at x if they are tangent at x

but do not McrossT!in some neighborhood of x. Any material surface

is compatible with a sphere of sufficiently small radius, but not
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Figure 3
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every two tangent material surfaces are compatible. We may now

state the following analog of Theorem 7.

Theorem L5̂ : I±§.t jfi ^Hd /8~ be material surfaces compati-

ble jrt x jmd suppose x JLS _a £oin.t ôf density of both Qt

and J. on both jS\ and jS . Thent l z

jjj (^t) + j/7 (X, t) <. 0

and

(x,t)<p (x, t)
1 ^ 2

> 0.

Proof̂ : Let OL{r) be the subbody defined above. Then since

) = ^(r) + £1(r) + j£2(
r) t h e Sec°nd Law implies

St( Q(r)) > Kt( a(r), a(r)
e) + Jt(3(r)) + ^ ( ^ ( r ) ) + J f c(^

It is not difficult to verify that as r —»-0

h(Sa(r)) = Trr2 + o(r2), a = 1,2,

A (3(r)) = o(r2),

V(<2(r)) = o(r2) .

Thus, since S,, K,, and J. obey Lipschitz conditions (Axioms

5 and 8), the above inequality implies

Jt(j5x(r)) + Jt(^2(r)) < o(r
2)

2
as r-^0. If we now divide by irr 9 take the limit as r -^0,

and use Theorem 12; we arrive at the desired results_, for x

is a point of density for both J and Q and q« (x̂  t) =

-Sc (x,t)%
^2

The second inequality of Theorem 15 is of the same form as

the heat conduction inequality derived in Theorem 17; the dis-

cussion following Theorem 17 is therefore applicable also to

the above inequality.

We now turn to the analog of the result Q (̂  ) = -Q (-J£).

We shall show that under a certain continuity assumption
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j {/$ ) + J (-$) <. 0. We phrase this assumption in terms of the

set function J • continuity assumptions on j^(x^t) sufficient

to guarantee this are easy to derive. Given a material surface

J&, a sequence { Q } of subbodies is said to tencl t<3 so'+ {~S)

in Jt if

n —**CD

lim V {Q ) = 0.nn —*-oo

^e^ ̂  material surface and suppose that

there exists a. sequence of subbodies which tends to j$ + (-̂ )

in J,. Then

U ) + Jt(-^) < o.

Proo£: By the Second Law

st(an) >Kt(an.Q«) w t o « n ) ;
thus if {(2n) tends to ^ + (-̂ ) in J the fact that

htian)-o, Kt(an,a
e
n)—o,

as n—^oo (see Axioms 5 and 8) implies the validity of Theorem 16.

We shall now establish a somewhat more enlightening version

of the above result. Suppose x is a regular point of a material

surface j£ and n is the positive unit normal to ^f at x. For

r sufficiently small there exists a

positive connected segment ^S{r) of >t? that contains x and

whose (relative) boundary is contained in the boundary of the

cylinder C(x,n, r) . Given s > 0 let - j£ (r) denote the

surface

with orientation corresponding to -ri at x - eru Then for €

and r small enough the set Q (r) enclosed by dC(x,n,r),

<&(r) , and -$ (r) is (by Axiom 1) a subbody whenever jS is interior

to £8 (see Figure 4) .
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Figure 4
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Theorem _17j Let j$ be_ interior to $ and let x be_ â

regular point of A- Then if

lim J.{-j&(r)) = J,(
€->0 fc e

it follows that

^ + Jt(-*S) < 0.

If, in addition, x i.s_ a, point o.f_ density of J and Q on, jS,

then

j^(x,t) + j_^(x,t) < 0

which yields the h^eat conduc^tiori j

Proof: Consider the subbody (3 (r) defined above. Since the

area of the portion of d$ (r) contained in dC(x,n,r) tends

to zero as £ —-*~0, we conclude from our hypothesis on J. that

as £ —^0. Therefore, since lim V ( Q (r)) = 0, Q (r) tends to
6 — 0 £ e

-£?(r) + (-^(r)) in J and Theorem 16 implies J.{j£(r)) +

Jf(-^(^)) <. 0. The remainder of the proof is obvious.

In order to discuss the heat conduction inequality we must

distinguish two cases, If <p and <p are of the same

sign at x with <p > tp , then

qp(x^t) >.• 0, which means heat flows from the positive side of

to the negative side^ and thus that heat flows from higher to

lower temperatures. If on the other hand <p and ID are

of different sign; it follows that heat flows from negative to

positive temperature; thus negative temperatures represent

!!hottern states than positive temperatures. These conclusions

are summarized on the temperature scale shown in Figure 5.



45

HEAT FLOW

)f ; T V )
0 Positive +00 -00 Negative 0

Reals Reals

Temperature Scale

Figure 5



46

Notice that in a continuous transition from negative to positive

temperatures one must pass through an infinite temperature; this

is an unfortunate result of the choice of temperature as the reci-

procal of the Radon-Nikodym derivative of the entropy flux with

respect to heat flux. The heat conduction inequality given in

the previous theorem is similar to the classical heat conduction

inequality3 which is the assertion that

q*grad<p <^ 0,
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VIII. R^duct^on to the, CĴ aAÔ ij.̂ -DuJhein ̂ ne^aalit^

In the previous section we derived a general form for the

Second Law (Theorem 14) as well as the following general

restriction on the surface entropy flux:

It is the purpose of this section to show that under certain

additional hypotheses the Second Law reduces to the Clausius-

Duhem inequality. To accomplish this we first prove that in

the presence of sufficient smoothness the conductive temperature c& is

independent of £ provided: (i) J
t ( ^ )

 = -Jfc (--*£)
 f o r every j&, and

(ii) the conductive temperature at any point has the same sign for

all surfaces through that point. We will then show that in the

absence of internal radiation the radiative entropy transfer is

determined by a single temperature field. These two results will

then imply a slightly generalized version of the Clausius-Duhem

inequality: one which involves both a conductive and a radiative

temperature field. Finally we will show that certain consti-

tutive assumptions imply that these two fields are equal.

We shall say that the surface ervtrojD£ flu£ is,

To simplify the statement of the following theorem let us agree

to write
3 Cx, n, t) = ^(x.t)

o

for any xe<3 , where ir is a plane material surface through x

with positive normal n.

This general form involving two temperatures was first proposed
by Gurtin and Williams [1966-2].
It is clear from the discussion following Theorem 11 that j (x,t)
is the same for all plane material surfaces through x with17^ ~
positive normal n. ~
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Theorem 3J3: (Existence of ja Single Conductive Temperature

Suppose that

(i) the surface entropy flux is balanced;

(ii) for each xe£3, sgncp, (x,, t) is independent of jS;

(iii) for each n the functions q(',n,t) and j(•^n,t)
o

are continuous on (B.

Then there exists an extended non-zero-valued function <p(.3t)

£Hk @> such that for any material surface j$ interior to ®

<^(x,t) = <p(x,t)

for almost every xe^(with respect to the measure Q V We call^ ^ — -j-/

<P (x, t) the conductive t^mge^ra^re a/t (x, t) .

P̂ roô f: The proof will proceed in a series of lemmasy each

of which is of interest in itself. The first of these lemmas

is an immediate consequence of hypothesis (i).

LgJBHL§i A,: JL°E. JILZ material surface j&

j^(x,t) - -j (x,t)

iL2£ almost every xe JS .

Lemma 2\ Let $ b̂ e a. material surface interior jto (B. Then

every regular point xejS i§^ a. point of density of J on j£ and

3/tx;t) = j(x,n,t) ,

where 11 i^ the positive unit normal to j£ art x.

Proo^f: Let x be a regular point of JB and ri the positive

unit normal to £ at x. Further^ let rr denote the plane which

passes through x - hn and has positive unit normal -ru Consider

the infinite cylinder C(x.,n, r) centered at x, with axis parallel

n and radius r, let A (r) and "^h(
r) be defined as before (see

Figure 6 and the discussion preceding Theorem 7), and let

h*(r) = r2 + inf{h > 0|7rh (r) n^(r) = 0} 9

7T-X(r) = Trh^(r) (r) .
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Figure 6
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Then, since £ is interior to (g , the following conditions must

hold for all sufficiently small r: the set (£(r) enclosed by ,S

and Tr*(r) in C(x,,n,,r) is a subbody, and

d«(r) = *5(r) + Tr*(r) + ?(r) ,

where 5(r)cSC(x,n,r). Since ^ is smooth in a neighborhood

of x, we have the following estimates:

K(£(r)) = Trr2 + o(r2),

A(7T*(r)) = irr2,

A(3(r)) = o(r2),

V(<3(r)) = o(r2),

as r tends to zero. Next the Second Law requires

eS.(a(r)) > J (Sa(r)) + K. (a(r),a(r)e).
U U U

But as r tends to zero St(a(r)) = o(r
2), K t (a(r) , a(r)

e) = o(r2),

and

hence

Now

Jt(Tr*(r))

Jt(ir*(r)) < o(r
2) .

Jt(ir*(r)) = f j(y,-n,t)dA(y) = f j (y-h* (r)n,-n, t)dA(y) ,
Jir*(r) ~ ~ """Q^) ~ ~ ~

o

and, since j(',-J},t) is continuous on (B and h* (r) = o(l),

[ j(y-h*(r)n,-n,t)dA(y) = f j (X, -n, t) dA (y) + o(r
2);

JTro(r) ~ ~ J7To(r)

thus we have

Jt(7r*(r)) = Jt(iro(r)) + o(r
2)

and hence

Jt(iroCr)) < o(r
2).

The same argument clearly may be applied to - £, yielding

Jt(-v6(r)) + Jt(-TTo(r)) < o(r
2).

But since the surface entropy flux is balanced the left-hand sides

of the last two inequalities are equal in magnitude and opposite

in sign; therefore
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t ) ) =-Jt(-iro(r)) + o(r
2) .

2If we divide by irr and use the above area estimates we obtain

Jt(-iro(r))

since the limit on the right exists so does that on the left and

3̂: There jexî ŝ ts a vector-valued function j (• 91) on (8

such that

for" a l l xeffi and any un i t X§£to£ £,•

Proo£: For any xe<3 we extend the function j"(x, «,t) to the

entire vector space as follows:
w

j(x,O,t) = 0.

It suffices to show that the function j (x., • , t) is linear 3 for

we may then appeal to the familiar representation theorem for

linear forms to deduce the existence of j(x^t). Clearly the

extended function j(x^-^t) is homogeneous; we have only to

show that it is additive.

Trivially

jQS'H+^t) = J(£jU,t) + j(x,v,t)

if u and v are linearly dependent. Suppose û  and v̂  are

linearly independent. Let us fix 6 > 0 and consider IT , the

plane through x with normal u; IT ̂  the plane through x with normal

v; and IT , the plane through' x - 6 (û  + y) with normal û  + \/.

Consider the solid 01(5) bounded by these three planes and two

planes parallel to u and v and each a distance b from x

.The improvement of the classical proof of CauchyTs Theorem of
which this is a minor variation is due to W. Noll.
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(see Figure 7), and let b and 6 be sufficiently small that

d(6) is a subbody. Then

aa(s) =u+ Y+w+ d + Q,

where U , K , W are contained in 7 r
u ^ v ^ u + v respectively, and

and Q are the parallel faces; then U is oriented by u, V* by

v 5 and W by -u-v. If e = €(6) denotes the area of W it is a

simple exercise to show that

iu
A ( u ) = T-~

V(a(6)) = 2bA(3) = 2bA(Q)= ~e6|u + v|,

and of course 6(6) = 0(6) . By the Second Law

s. (a(6)) > J. (̂ oi(6)) + K, (a(6)
t — t t

and, since St«jl(6)), Kfc (Q(6) , a(6)
e) , J t(

3), a^d Jfc(Q) are all

0(6) (see Axioms 5 and 8)/ this inequality implies

J (R) + J (V*") + J (Ẑ ") £. ° (6) •

Thus
|u| J (U) I v I J ( ]/") J (U/)

and taking the limit as 6 —* 0 we arrive at

lul u IvI v -u-v
j ̂ x _-r.t) + i ; T- j (x.-i—r.t) + j (x."i ; r. t) < 0

or^ as j(x,«,t) is homogeneous^

Since Jĉ S(S we can carry out the same construction for -û  and

which yields the same equation with reversed signs on û  and

However^ the definition of j(£,w, t) and Lemma 1 imply that

j(x,w, t) = - j (x, -w^ t) , and hence

J(£;U,t) + j(x,v,t) + j (x,-u-v, t). >. 0.
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The last two inequalities imply that

jfei^t) +. j(x,v,t) = -j(x,-u-v,t) = j(x,u+v,t);

and the proof is complete*
c

k£S5B£ £ : For any xe(3 the vectors ^(x, t) and cĵ x, t)

are linearly dependent.

Proof: Assume j(x,t) and (j(x, t) are linearly independent.

By hypothesis (ii) <p« (x, t) is either (a) positive for all j$ or

(b) negative for all JS . Assume (a) holds. Then

q(x, t) *n x

~ rrr—" >. 0 for all ii not orthogonal to ^(x,t). But for
any n in the span of j (x, t) and £(x, t) that is normal to

q(x.t) + j(x.t) we must have T T — 7 ^ — - < 0^ which is a contradiction.

A similar argument applies to case (b). This completes the proof

of Lemma 4.

The proof of Theorem 13 follows at once from Lemma 4. Indeed,

Lemma 4 implies the existence of a non-zero (possibly infinite)
o

function cp(^t) on © such that

whenever q(x, t) ^ Oj and this function clearly satisfies cp(x,t) =

<p. (x, t) for almost every xej$ (with respect to Q ) .

Thus we have established conditions under which J. assumes

the classical form for entopy conduction. The fundamental

assumption was that J is balanced. Unfortunately3 assuming

that the radiative entropy flux K. is balanced does .not suffice

to reduce the radiative temperature to a single field. Indeed,

if K. is balanced we may apply the analog of Theorem 6 to show

that K^{Ol,QL ) is described by a single density k(»J,t); but it

does not follow that there is a single temperature field relating

Recall our agreement, in the discussion preceeding Theorem 15,

that j (x,t) = • . y q (x,t) at a point of density of J and Q .
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k(«,t) and the corresponding density for Rt, r(-,t); this

requires further assumptions. One such assumption is that there

be no internal radiation. We prove below that this implies balance

of radiative entropy transfer and guarantees the reduction to a

single radiative temperature field.

Theorem 1̂ 9: (Existence ojf a. Single, Radiative Temperature

Field) Assume there is no internal radiation. Then for every

subbody Q r r (x t)G J 5h
where r(x,t) s r e(x,t) and 6 (x, t) = 6 e(x,t).

(B (B

J
As we saw in Section 3 the absence of internal radi-

ation implies

Rt«P/*) = 0

for every subbody Gland (PeB(Q.b) . Since Kt(-,<5) « Rt(-j,d) by

Theorem 10, the above relation must also hold for K (• ,0.) and,

of course

identity

of course, also for K.{*,& ). Thus we may conclude from the

that

for every (p€B((2) . This result, when combined with Theorem 12,

yields the desired result.

Of course there are more general conditions under which

there is a single radiative temperature. Suppose K is

balanced. Any condition which guarantees that the measure

generated by the function C? ~*K£Q,aF) (see the argument in the

appendix) is absolutely continuous with respect to the measure

similarly generated by 0L^B^Cts0L
e) will suffice to define a

single radiative temperature.
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As noted, lack of internal radiation implies that Kt(-/&) = 0

for any subbody 0. and hence trivially it implies that Kfc is

balanced. Thus if we also assume that Jfc is balanced it follows

that M is balanced and from Theorem 9 we obtain

Theorem 2C): Assume that there is no internal radiation and

that the surface entropy flux is balanced. Then the entropy

production N, is s-additive on JiA .

Theorems 18 and 19 now imply the main result;of this section:

the generalized Clausius-Duhem inequality.

SfeSSESJS £A: (The Generalized Clausius-Duhem Inequality)

L,et J obey the conditions of Theorem 18 arid suppose that there

is no internal radiation. Then for any subbody Q

r f
s(x,t)dV(x) >J

Of course, under suitable smoothness assumptions this becomes
q

s >, divH + ~ .

The relation in Theorem 21 differs from the usual Clausius-

Duhem inequality only by the presence of separate radiative and

conductive temperatures. We believe the assumption that

the two temperatures coincide should be regarded as a consti-

tutive assumption, rather than as a general axiom. In fact it can

be shown * that for a very general class of materials the

modified Clausius-Duhem inequality requires the two temperatures

be equal. As an illustration of the conditions which lead to this

result let us consider the special case of a jS/imgJLe/ hgajt condioĉ tor

(without memory). Such a material is defined by two constitutive

assumptions. The first is that there is no internal radiation

and that the conductive temperature <p is independent of **$ at
jo

and Williams [1966-2].
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each point; therefore, in the presence of sufficient smoothness,

the relevant forms of the first two laws are

e = divq 4- r,
q

s >, div(~) + ~.

The second constitutive assumption is that there exist

four response functions. q^^s, and G 3 which give the heat

flux vector q, the specific internal energy e, the specific

internal entropy s, and the radiative temperature 0 at any

(x,t) whenever the conductive temperature

<p and its gradient
g = grad<p

are known at (x,t):

s(x,t) = s(<p(x,t),

e(x,t) = 9((p(x,t), g(x,t),x).

We shall assume that the response functions are defined and

of class C on (RxT^xfl , where (R is the extended real number

system with zero deleted and Y* is the vector space associated

with %•

2
Given a class C time-dependent conductive temperature

o
field <p on (B for all time we can compute the fields q,e,s and 0

by means of the foregoing constitutive equations. and r by means

of the First Law; the ordered array {(p,g,e, s,e, r) so defined will

be called a grocess. The above constitutive assumption is

com̂ at̂ ib̂ le Ĵ ith XjQ^JQodj^naic^ic^ if every process satisfies the

Second Law.

We call the linear transformation K(cp,gyx) defined by
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the cond)i£tjLvjA^ tensor (corresponding to ((p̂ ĝ x)) . Of course

d denotes the gradient with respect to the vector g computed
g ~

holding <p and x fixed,

Thgg^gJE 2JL*. (Reduction to a Single Temperature) Let the

simple .heat conductor described above ]be compatible with thermo-

dynamics and assume that jthe conductivity tensor _ijs never skew.

Then the radiative temperature equals the conductive temperature

in every process, i.e.,

for all cpetR, ge/', xeQ .

Proof: We choose ((p^,g^^^) e <R x Y* x (B arbitrarily. It
0 * ^ 0 0

is a trivial matter to exhibit a time-independent conductive

temperature field <p such that

and

grad2<p(xQ) = A,

where A is an arbitrary symmetric tensor (linear transformation).

By hypothesis the (time-independent) process {(p^q^e^ s,9, r} generated

by <p must obey the first two laws; thus

divq + r = 0,

d i v ( | + f < 0 ,

and therefore, eliminating r and evaluating the resulting inequality

at Zo>

O /^O (p

where1

and

Here tr denotes the trace operation
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Since K (cp , g ̂ x ) is not skew, div(j(:K ) can be made to take

on. any given value by proper choice of A; if "<p were not

equal to 0 (cp ,g ,x ) we could choose A so as to violate the

above inequality. Therefore

vo V V <

and the proof is complete.
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Appendix

In this appendix we shall prove the following

Theorem: L

and suppose that

for all 01 £ LM and some real number k. Then a. is the

restriction to J4 oj[ one and only one measure a on

B « 8 ) with

for all (peB«8) .

P̂ rô of: Given any set A, let X denote the closure of its

interior: _ —

A = A.

Further, let F denote the set of all finite unions of half-open

rectangular prisms of the form

{x| a1 < x 1 < b 1, i = 1,2,3},

and let

R = {A| A = BHCB, Be [P } .

Clearly [R is a ring. Moreover, by Axiom 1,

AG R ^ Ae
Next, we define the set function a on (R by

a(A) = a(K) ,

and we let |a|, a 3 and a" denote, respectively, the total,

positive, and negative variation of a (see Dunford and Schwartz

[1958], pp. 95-99) . The function a and (hence) the functions joj, a*, and

a" are finitely additive; indeed, if A,BetR are disjoint, then

A and B are separate and

a(AUB) = a(AUB) = a(ALB) = <y(K) + a (I) = a(A) + a(B) .

Further, if A ^ K, i = 1,2,...,N, is any finite collection of
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E | a ( A i ) | = E | a ( A . . ) | < Z k V ( A i ) = Z k V ( A i ) " = k V ( ( U A . ) < k V ( A ) j

thus
| &\ (A) < kV (A) , ct (A) < kV (A) , oT (A) < kV (A) ,

for a l l Ae (R . Consequently, given any monotone decreasing
oo

sequence {A } in IR with D A = 0 we have
n n=l n

lim | a\ (A^) = lim a (An) = lim oT (A^) = 0;
n—*-oo n—>-oo n —*~ oo

and this in turn implies (Halmos [1950], p. 39) that | a\ , a , oT,

and (hence) a are countably additive and bounded on IR. Next,

since the cr-ring generated by IR is B (03) , we may conclude

from a well-known theorem (Dunford and Schwartz [1958], pp. 134-

136) that a, o: , and oT have unique countably additive exten-

sions c?, a. , and 2T to IB(CB) . Moreover a = ct —. oT and

oo co

a1" (A) = inf Z c? (A ) , oT (A) = inf 2 n

n=l n n=l

where each infimum is taken over a l l sequences (A } of sets in [R

whose union contains A. Then, since
CD 00

(A) < k Z v ( A )
n=l n n=l n( k
n=l n

we must have
oo oo

inf H a+(h) < k inf 2 V(A ) = kV(A) ;
i n n

) k in 2 V(A )
n=i n n=l n

thus ^"(A) <. kV(A) . Similarly S~ (A) <. kV (A) , and hence

| a(A) | < kV(A) .

To complete the proof we have only to show that

c*(CU = a(OL)

for any Oi e JA . Given any d e JJi we have the inequality

\ctiOL) - ct{OL)\ < \aiOL) - a ( A ) | + \a(K) - ct(a ) \
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which must hold for every AeR. Now it is a consequence of a

well-known result1 that given any € > 0 we can always find an

AetR such that

|a(Q) - a(A) | < e, v(Ol^A) < e;

and this implies

|a(a) - a{(3) | < 6 + \a(K) - a{Gl) \ .

Next, if we denote the operation of relative complementation

(subtraction) in the Boolean algebra Jl/l by " \ M ( i.e.

= (jAMb) then, since

it follows that

I«(A) - «(a)| < k(v(A\a) + v(a\I)).

It. is not difficult to show that

V(A\O.) + v(a\5) = v(aAA).

Thus

|a(Q) - a ( a ) | < € + 2ke

which implies the desired result, . . . .

To establish the uniqueness of this extension, suppose

a, , oc~ both satisfy the conditions of the theorem. Then, since

they are both volume-continuous, AeIR implies

ax(A) = ax(A) = a (A) = o?2 (A) = a2 (A) .
2

Hence they agree on CR, and it is a classical result that they

must then agree on IB (<3) , which is the a-ring generated by CR.

This completes the proof.

1See Halmos [1950], p. 56.

2See Halmos [1950], p. 54.
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