
CMU Report on TDT-2: Segmentation, Detection and Tracking

Jaime Carbonell, Yiming Yang, John Lafferty,
Ralf D. Brown, Tom Pierce, and Xin Liu

School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

{jgc,yiming,lafferty,ralf,tomp,xliu}@cs.cmu.edu

ABSTRACT

This paper reports the results achieved by Carnegie Mellon
University on the Topic Detection and Tracking Project’s second-
year evaluation for the segmentation, detection, and tracking
tasks. Additional post-evaluation improvements are also
presented.

1. INTRODUCTION
Carnegie Mellon University (CMU) participated on all three "of-
ficial" TDT-2 evaluations: 1) automated segmentation of ASR
text, 2) detection with a 1-file deferral period on segmented ASR
text, and 3) tracking on segmented ASR text with 4 training
stories per topic (Nt=4). CMU also reported results for both
detection and tracking on unsegmented text by combining
automated segmentation with detection and with one of the track-
ing methods (d-trees). CMU’s results for segmentation were the
best reported in the official evaluation, and average for detection
and tracking. We report on each task and method briefly in this
paper, as well as on post-evaluation results.

2. AUTOMATED SEGMENTATION
The story segmentation system that was developed for the TDT-2
evaluation was built closely along the lines of the framework
presented by Beeferman et al [1]. As described in this paper, the
basic approach is simple: we train a statistical model that uses
both "topicality" features to detect shifts in the subject of the
story, and "cue-word" features that allow us to model the style of
language that is characteristic of the beginning and end of a story.
The "topicality" features are constructed using an adaptive
trigger-based language model trained according to the minimum
divergence criterion with respect to a smoothed trigram default
model [2]. This model was trained on 10 million words of CNN
data from the years 1992--1994, and is identical to the one used
in CMU’s TDT-1 system. The "cue-word" features query the
presence of individual words in the neighborhood of a candidate
boundary. The statistical modeling paradigm incrementally adds
features to a log-linear model, using a maximum entropy
framework that is similar to stage-wise versions of additive logis-
tic regression [3].

The candidate set for feature selection made use of all of the
fields in the TDT-2 ASR-text files except for the confidence
score. Thus, the features incorporated information about the
individual words, the speaker cluster id, silence duration, and the
document source. Story boundaries were only hypothesized
where there was a silence annotation in the ASR-text files. The

models were trained on all of the January-April development set
(train and devtest), except for approximately 100,000 words of
text that were held aside for testing and threshold setting.

Judging from the features that were induced, the speaker cluster
feature appears not to have been informative. One significant
new aspect of the segmentation system was that individual
models were trained for the different news sources: one for each
of the ABC, CNN, PRI, and VOA sources. While VOA consists
of two subsources in the development data (and three in the
evaluation data), a single VOA model was trained. The use of
source-dependent models led to a 1-2% absolute improvement in
Cseg on the training set. A less significant change from the
TDT-1 system was that the cue-word vocabulary was reduced, in
order to decrease the number of candidate features and thus speed
up the process of feature selection. A preliminary error analysis
suggests that this may have hurt performance somewhat, since
several important words, particularly for the VOA sources, were
missing. Approximately 200 features were induced for each of
the sources; cross-validation was carried out on the smaller sour-
ces (ABC, PRI, VOA) to determine the best stopping point, but
no smoothing was used.

There were a few things that had been useful for TDT-1 data and
other manually transcribed texts that did not prove to be effective
on the TDT-2 ASR-text data. For example, in previous work a
significant reduction in miss rate resulted from growing a deci-
sion tree on the same data, and then linearly interpolating the tree
and the exponential model. However, the performance of deci-
sion trees was significantly lower on the TDT-2 data, and so they
were not used. We also experimented with boosted decision
trees, but these too performed significantly worse than the ex-
ponential models. In particular, we used the Real AdaBoost
algorithm [4] applied to 3-level and 1-level decision trees as
"weak learners," but these performed just slightly better than a
single tree, with a roughly 3% higher absolute Cseg than the
maximum entropy method. Further work needs to be done to
better understand these negative results.

In spite of the fact that the additional error reduction methods
proved ineffective, our results using the standard TDT error
metric for segmentation was the lowest, 0.1463 in the official
evaluation on the previously unseen stream of test stories.

3. DETECTION
The CMU topic detection detection system for TDT-2 was
largely based on previous retrospective and online detection sys-
tems used in the TDT-1 pilot study [5, 6], since the new defini-
tion of the detection task encompasses the the earlier versions of

the tasks. In particular we used the vector space model (VSM) to
represent documents as weighted unigram models. We also used
temporally-sensitive versions of our incremental and hierarchical
group-average (GAC) clustering algorithms to detect new topics
within the 3 deferral periods.

The operation of the system is fairly straightforward. First, the
inverse-document frequencies for all terms are initialized using a
training corpus. As new stories "arrive" in the deferral window,
they are used to update the IDF statistics. Then, the entire
deferral window is clustered using GAC with fractionation [7], an
efficient greedy agglomerative clustering algorithm. This method
divides the incoming data stream into sequential buckets, cluster-
ing by cosine similarity within each bucket, and then merging
clusters among buckets. Additional shuffling and reclustering
among stories in adjacent buckets improves performance. A
fortunate property of fractionation lies in the way it achieves it’s
efficiency- by dividing the data, and performing a partial cluster-
ing, and repeating; by using the time of stories as a criteria for
these divisions we can prefer associating stories that occur nearby
in time. Preferring temporally proximate stories in this way
provided a substantial performance increase in earlier TDT work.

The TDT task requires the identification of new topics prior to
the expiration of the deferral window. In other words, decisions
as to whether individual stories belong to existing topics or create
the start of a new one must be made without waiting for new data
past the deferral window. These decisions are made by cluster-
to-cluster similarity comparisons between each cluster in the
deferral window and past topic clusters prior to the deferral
period. Specifically:

sim(C1, C2) = cos(centroid(C1), centroid(C2))

NEW(C1) iff max[sim(C1, Ci)] < THRESHOLD
i

If the maximum similarity is above a threshold (optimized on the
training corpus), then the cluster is deemed to be an extension of
the previous topic. Otherwise, it is deemed to be the onset of a
new topic. In either case (the extended old topic or the beginning
new topic) becomes part of the past as the deferral window is
moved forward in time.

As an improvement to the similarity function we implemented a
form of temporal decay for the cluster-to-cluster similarity func-
tion. At first, we implemented the date of the earliest story as a
timestamp, but this led to a high miss rate (0.3526 story
weighted, to be specific). Changing the time stamp to the most
recent story (to penalize less topics that continue to be reported)
significantly improved our results, dropping our miss rate to
0.0765 while increasing false alarm by a much smaller proportion
(0.0013 vs 0.0004).

We found that the use of incrementally-updated IDF statistics
allowed for larger events to be followed through their evolution
when later reports contain evolving content; essentially allowing
topic drift. This becomes important in larger events, when
knowledge about the event, the terminology used to describe it,
and related developments can change substantially from initial
reports as the event matures.

Our methods appear to degrade gracefully under imperfect
transcription and boundary conditions. Machine recognized
speech tended to increase the number of miss and false-alarm

Source Segmented? Deferral Story Topic
Condition Period Weighted Weighted

ASR yes 10 files 0.0075 0.0057
ASR yes 1 file 0.0092 0.0060
Transcript yes 10 files 0.0068 0.0049
Transcript yes 1 file 0.0089 0.0057
ASR NO 10 files 0.0107 0.0076

Table 1: Detection Results

Source Segmented? Deferral Story Topic
Condition Period Weighted Weighted

ASR yes 10 files 0.0028 0.0042

Table 2: Post-Submission Improved Detection Results

documents minimally, although word-error rates (WER) ap-
proached 25%. Initial tests with automatically determined story
boundaries incurred more degradation, but still less than an-
ticipated. Further tests are required to quantify these effects more
reliably, but the results reported in Tables 1 and 2 below provide
good evidence of robust performance.

We expect that performance would be improved by treating in-
coming stories differently based on source, as will be discussed in
Section 6. Also, editorial style articles, regardless of source,
often might diverge enough to be considered distinct from a
group of ‘‘just-the-facts’’ reporting on the same topic. Both of
these behaviors have been observed, and hopefully can be ad-
dressed in future revisions.

4. TRACKING
We used two methods for topic tracking, k-nearest neighbors
(kNN) and decision-tree induction. kNN is an instance-based
classification method which has been previously applied (by
Yang et al [8]) to text categorization, with generally good perfor-
mance.

A requirement in official TDT evaluations is that each event be
tracked independently, without any knowledge about other
events. According to this constraint, we adapted our conven-
tional M-ary classification kNN developed for text categorization
in general, and trained a kNN classier per topic. Essentially, the
system converts an input story into a vector, compares it to the
training stories, and selects the k nearest neighbors based on the
cosine similarity between the input story and the training stories.
The confidence score for a YES prediction on the input story is
computed by summing the similarity scores for the positive and
negative stories respectively in the k-neighborhood, and check-
ing the difference between the two sums is above a threshold
(typically 0, unless we want to introduce a bias towards avoiding
false negatives or avoiding false positives). The scores for all test
events are also recorded to computer Decision-Error Tradeoff
(DET) curves.

Since positive instances are sparse (for most topics) in the train-
ing set, it is difficult to achieve greater recall (fewer misses)
without significantly sacrificing precision (more false alarms).
One solution to this problem is to discount the influence of
negative examples by sampling a small portion in the k-
neighborhood, and ignoring the remaining examples. This idea
leads to a modified version of kNN; for distinction, we refer to
the original version as kNN-a, and the modified version as kNN-
b. In the modified version, we take k1 (less than k) nearest

positive examples (P(x,k1)) and k2 (less than k) nearest negative
examples (N(x,k2)) from the k-neighborhood, and average the
similarity scores of the two subsets respectively. The confidence
score for a YES prediction on the input story is computed as an
interpolated value between these two quantities. For the purpose
of the official evaluation, however, we did not use different k1
and k2 parameters.

The Decision Tree (DTree) tracking method also uses binary
classifiers. DTree uses not only the words as features, but also a
number of meta-features such as presence of a word near the
beginning of a story, multiple occurrences of a word, highly-
collocated bigrams, and M-of-N thresholds. Further, the
decision-tree induction can be tuned through a variety of
inductive-bias parameters such as the maximum number of nega-
tive training instances, when to stop growing the tree, and which
meta-features to consider. A time-windowing capability is avail-
able when performing the actual tracking using the induced deci-
sion trees, but it was ineffective in this evaluation because the
data covered only two months of time -- in TDT-1 we found that
two months was an appropriate size for the temporal window.

To create an M-of-N threshold meta-feature, DTree simply
selects the N top-ranked features (including non-threshold meta-
features) and then splits the collection of stories for the decision
node by whether or not they contain at least M of those N
features, rather than whether or not they contain the single top-
ranked feature.

Bigram meta-features are selected based on the mutual con-
ditional probability of the two words. From each possible pair of
adjacent words, select only those where the occurrence prob-
ability of each word given the other is above some pre-selected
threshold. This list of candidate bigrams is then further limited to
a specified number of bigram features by selecting the most
likely from among the candidates.

Because of the small number of positive training instances, the
information gain which is the primary means of ordering features
in decision-tree induction had to be augmented with additional
measures that serve as tie-breakers. If two (meta-)features have
the same information gain, then

• bigrams will be given priority over single words,

• words occurring near the beginning of the story will
be given priority over words occurring anywhere,

• simple words are given priority over multiple-
occurrence meta-features, and

• the feature with higher TF*IDF score is given
priority.

Should none of the above tie-breakers prefer one word over
another, the final resort is to prefer the longest words and then to
simply alphabetically sort words of equal length.

The DTree program has been optimized for speed when tracking
multiple events (especially when testing multiple values of Nt) on
the same story collection. The entire collection is read into
memory and indexed before tracking begins, trading off increased
memory use (depending on parameters, 3 to 4.5 times the size of
the text without SGML markup) against reduced run-time. The
evaluation set was processed at Nt=4 for all 21 evaluation events
in just 4 minutes 31 seconds, using 140 megabytes of memory,
and for Nt=1,2,3,4 in 8 minutes 25 seconds.

System Source Boundaries Story Topic
Condition Given? Weighted Weighted

kNN ASR yes 0.0076 0.0077
kNN Cl.Caption yes 0.0072 0.0072
DTree ASR yes 0.0096 0.0085
DTree Cl.Caption yes 0.0100 0.0090
DTree ASR NO 0.0116 0.0109

Table 3: Official Tracking Results, Nt=4

System Source Boundaries Story Topic
Condition Given? Weighted Weighted

DTree ASR yes 0.0085 0.0079
DTree Cl.Caption yes 0.0089 0.0080
kNN ASR NO 0.0105 0.0092
DTree ASR NO 0.0106 0.0105

Table 4: Post-Submission Tracking Results, Nt=4

For the default evaluation, DTree used 300 negative training
stories, 4-of-12 threshold features, the multiple-occurrence and
near-beginning (within 125 words) meta-features, and stopped
growing the trees whenever a node had at least 56% positive
instances. The parameters for the closed-captioning text and
FDCH manual transcriptions were similar, using 200 negative
training stories in each case, and stopping at 30% (32%) positive
instances for a node. All of these parameters were set via cross-
validation on the development set.

We found that on the TDT-2 collection, the following were
advantageous, improving CTrack for DTree:

• preferring words near the beginning of the story

• threshold meta-features (greatly improve robustness)
The following did not improve performance:

• adaptive time-windowing (insufficient temporal ex-
tent in the collection)

• bigram features (increased miss rate more than it
reduced false alarms)

• sets of words common to the positive training stories
(often increase both miss and false alarm rates)

And the following varied, sometimes helping and sometimes
hurting performance:

• stemming the words of the story

• distinguishing between single and multiple occur-
rences of a word

Planned enhancements to DTree are 1) per-source decision-tree
training and induction parameters and 2) unsupervised updates
triggered by a second, high-precision decision tree. Currently, all
parameters such as M/N for threshold features and the cutoff for
"near the beginning of the story" are set globally, but DTree
would benefit from having these parameters set individually for
each source. This will be discussed in more detail in Section 6.

The tracking results for kNN and DTree were as shown in Table
3. These results indicate that kNN is somewhat superior to
DTrees for this tracking task, and also that ASR with 25% word-
error degrades performance only moderately (about 10% as in
detection). Moreover, combining automated segmentation with
tracking also degrades performance gracefully, by about the same
percentage as for detection. Most of the increase in CTrack is due

to increased false alarms (roughly double), many of which result
when an incorrect segmentation places key words into one of the
stories adjacent to the actual on-topic story, causing DTree to
decide that the adjacent story is also on-topic. Since kNN is less
affected by individual words, it suffers less degradation in the
topic-weighted error metric from the segmentation errors, as
shown in Table 4 for a post-evaluation run.

After submitting our results for tracking with DTree, we dis-
covered that an error in the code used to find optimum parameter
settings resulted in suboptimal parameters. On correcting the
error and re-tuning for the training set, we achieved the improved
results shown in Table 4 using 225 negative stories, 4-of-12
threshold features, the near-beginning meta-feature, and stopping
expansion at 50% positive instances.

5. CONCLUSIONS
Carnegie Mellon’s automated segmentation system had the best
performance metric at 0.1463, and in post-submission collabora-
tion with IBM researchers was shown to perform even better
when using an IBM-developed post-processor. At this level of
accuracy, the automatic segmentation allows detection and track-
ing to be performed with a degradation of about 20% to 30% in
the error metric, primarily as a result of increased false alarms.
The increase in false alarms appears to be due to segmentation
errors causing key content words to be assigned to neighboring
stories.

While our submitted detection results were substantially poorer
than the best system’s results, primarily due to a very high miss
rate, a minor post-submission change to the algorithm allowed
our detection system to nearly match the best reported topic-
weighted results with an error metric of 0.0042 and perform even
better for story weighting with an error metric of 0.0028 (in both
cases, the error metric resulting from never detecting a new topic
is 0.0200).

For tracking, both of our systems had similar performance on
ASR data, with kNN yielding an error metric of 0.0077 and
DTree yielding 0.0079 (as for detection, the error metric from
never declaring a story to be on-topic is 0.0200). Surprisingly,
while kNN performs about 10% better on transcribed data, DTree
actually yields a marginally higher error metric.

6. FUTURE WORK
As mentioned previously, we intend to add the source of a story
as another item contributing to the decisions for both detection
and tracking. The different sources of TDT-2 stories often differ
dramatically in character -- length, detail, vocabulary, style, etc.
-- and thus a single globally-tuned set of parameters is unlikely to
be optimal for any of the sources. As a particular example,
DTree performed best when preferring the first 125 words of a
story, but that is close to the average length of a CNN story,
meaning that this preference has little effect when the source of a
story is CNN. For CNN, 60 words may be more a appropriate
setting for the "near beginning of story" meta-feature.

The small number of positive training instances poses a sig-

nificant problem for per-source training in the tracking task. We
intend to overcome this problem by ignoring the source of the
positive training stories, in effect duplicating them across each
news source. While this clearly leads to degraded training data
for any given source, we expect the improvement from training
individually on each source to outweigh the degradation caused
by not having positive training instances from some of the sour-
ces.

An area of concern in tracking which we have not yet addressed
is topic drift. Our current tracking systems simply train an event
model once and for all from the training stories and then continue
to use the same model, even though the event evolves over time.
We intend to add some form of adaptation to the tracker in order
to better model the event. Using a second copy of the tracker
tuned for high precision will allow those stories in which the
system has the greatest confidence to be added to the training set
(without supervision), letting the tracker train on additional in-
stances as additional news stories are received.

7. REFERENCES

1. D. Beeferman, A. Berger, and J. Lafferty, ‘‘Statistical
Models for Text Segmentation’’, Machine Learning, Vol.
34, 1999, pp. 1-34.

2. D. Beeferman, A. Berger, and J. Lafferty, ‘‘A Model of
Lexical Attraction and Repulsion’’, Proceedings of the
35th Annual Meeting of the Association for Computa-
tional Linguistics., 1997.

3. T. Hastie and R. Tibshirani, Generalized additive models,
Chapman and Hall, 1990.

4. R. Schapire and Y. Singer, ‘‘Improved Boosting Al-
gorithms using Confidence-Rated Predictions’’,
Proceedings of the Eleventh Annual Conference on Com-
putational Learning Theory, 1998.

5. James Allan and Jaime Carbonell and George Doddington
and Jonathan Yamron and Yiming Yang, ‘‘{Topic Detec-
tion and Tracking Pilot Study: Final Report}’’,
Proceedings of the DARPA Broadcast News Transcrip-
tion and Understanding Workshop, 1998.

6. Yiming Yang, Thomas Pierce, and Jaime Carbonell, ‘‘A
study on retrospective and on-line event detection’’,
Proceedings of the 21th Annual Int ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, 1998, (SIGIR’98)

7. D.R. Cutting, D.R. Karger, J.O. Pedersen, and J.W.
Tukey, ‘‘Scatter/Gather: a Cluster-basd Approach to
Browsing Large Document Collections’’, Proceedings of
the 15th Annual Intl. ACM SIGIR Conference on
Research and Development in Information Retrieval,
1992, (SIGIR’92)

8. Yiming Yang, ‘‘An evaluation of statistical approaches to
text categorization’’, Journal of Information
Retrieval, 1999, (to appear)

