
Code Readability Testing, an Empirical Study
Todd Sedano

Carnegie Mellon University
Silicon Valley Campus

Moffett Field, CA 94035 USA
011-650-335-2812

todd.sedano@sv.cmu.edu

ABSTRACT
Context: A substantial portion of the cost of software during its
life cycle is consumed not in its development, but in its ongoing
maintenance. One of the factors that leads to improved code
maintainability is its readability. When code is difficult to read, it
is difficult for subsequent developers to understand its flow and its
side effects, and they are likely to introduce new bugs while trying
to fix old ones or while extending the code’s original
functionality. But how do software developers know they have
written readable code?

Objective: This paper presents a new technique, Code Readability
Testing, to determine whether code is readable and evaluates
whether the technique increases programmers’ ability to write
readable code.

Method: The researcher conducted a field study using 21 software
engineering master students and followed the Code Readability
Testing with each student in four separate sessions evaluating
different “production ready” software. After the observations, a
questionnaire evaluated the programmer’s perspective.

Results: By following Code Readability Testing, half of the
programmers writing “unreadable” code started writing
“readable” code after four sessions. Programmers writing
“readable” code also improved their ability to write readable code.
The study reveals that the most frequent suggestions for
increasing code readability are improving variable names,
improving method names, creating new methods in order to
reduce code duplication, simplifying if conditions and structures,
and simplifying loop conditions. The programmers report that
readability testing is worth their time. They observe increases in
their ability to write readable code. When programmers
experience a reader struggling to understand their code, they
become motivated to write readable code.

Conclusion: This paper defines code readability, demonstrates that
Code Readability Testing improves programmers’ ability to write
readable code, and identifies frequent fixes needed to improve
code readability.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging – code
inspections and walkthroughs

General Terms
Experimentation

Keywords
Code readability

1. INTRODUCTION
Writing readable code reduces the costs of development and
maintenance of software systems. A considerable portion of the
software development cost is ongoing maintenance to add new
features and fix defects [7]. Even in the early stages of the
software’s evolution, the ability to read and quickly understand
existing code is a key factor that affects the code’s ability to
change.

While creating programmers who write readable code is not a new
problem for the software industry, the previous work focuses
around what code should look like, not how to train programmers
to write readable code. Developers realize the importance of
writing code that is readable by their peers, but they often do not
receive feedback on whether their code is readable. Programming
constructs that are clear to the author can confuse the next
developer. Some programmers bemoan that they can’t read their
own code six months later. If the code works, clearly the
computer can understand it, but can anyone else on the team?

Teaching this skill is not a top priority in computer science and
software engineering curricula. The Computer Science
Curriculum promotes understanding the programming paradigms
of a particular language (e.g. functional vs. nonfunctional), not
how to write readable code [12]. The Software Engineering Body
of Knowledge (SWEBOK) does make one reference to writing
“understandable code” in the Coding Practical Considerations for
the Software Construction knowledge area [6]. This is just one out
of 229 subtopics of SWEBOK. The Graduate Software
Engineering reference curriculum (GSwE) does not prescribe any
further recommendations beyond SWEBOK for this topic [25].
Some undergraduate courses briefly cover the issues of
programming style. A few courses will penalize students for
producing unreadable code. In rare courses, students swap
assignments simulating the experience of inheriting someone
else’s code. While this sensitizes students to the needs of writing
readable code, the experience lacks concrete steps to increase their
skill. The emphasis of a computer science curriculum or a
software engineering curriculum is on the substantial topics in the
reference curriculum.

Companies tend to assume programmers arrive with this skill or
will learn it through on the job training. Project teams may have
code style guidelines, or best practices around writing code e.g.
when a programmer opens a database connection, immediately
write the close statement.
There is strong empirical evidence that supports the effectiveness
of software inspections and code reviews for uncovering bugs.
While theses techniques can identify readability issues, they are
not designed to teach developers how to write readable code.
When an author receives a list of defects, the author looses the
opportunity to learn how the code confuses the reader.

Code Readability Testing reveals areas where the code is not
readable, and enables a dialogue between coder and reader.

Feedback is instantaneous, as the author sees exactly how reader
interprets the code.

1.1 Research Objectives
Using the goal template from Goal Question Metric (GQM), the
goal is to…
Analyze Code Readability Testing for the purpose of
determining its effectiveness in improving programmers’ ability
to write readable code with respect to their effectiveness from
the point of view of the researcher in the context of the “craft of
software development” course at Carnegie Mellon University.
This paper decomposes this goal into four questions:
Research Question 1: Would programmers who repeatedly follow
Code Readability Testing increase the readability of their code?

Research Question 2: What kinds of issues does Code Readability
Testing detect?
Research Question 3: How time-consuming is readability testing?

Research Question 4: How did programmers perceive Code
Readability Testing?

2. BACKGROUND AND RELATED WORK
Improving code readability and programming style is not a new
topic for the software industry.

In their seminal 1974 book, The Elements of Programming Style,
Kernighan and Plauger document heuristics for improving coding
practices and code readability by rewriting code used in computer
science textbooks [19]. In the 1982 book, Understanding the
Professional Programmer, Gerald Weinberg emphasizes that the
programmer is a more important reader of the code than the
computer’s compiler or interpreter. He suggests that just like the
writing process for English text, code needs to be rewritten
several times before it becomes exemplary code. He encourages
programmers to spend time reworking code that will be frequently
read in the future [30].

In recent books aimed at professional programmers, Andrew
Hunt, David Thomas, Kent Beck, and Robert Martin tackle the
coding style in a variety of ways. In Pragmatic Programmers,
Hunt and Thomas examine the tools, processes, and tricks that
help programmers master their craft [17]. In Clean Code, Robert
Martin addresses techniques to help a developer become a better
programmer [22]. In Implementation Patterns, Kent Beck
addresses good software development design patterns [3]. In
short, they distill their life long experiences into best practices,
some of which address code readability.

In recent studies, researchers examine code readability from
different approaches: automated improvement techniques, naming
of identifiers, syntax, and automated metrics. Several studies
attempt to automate techniques to improve code readability. Wang
examines the automatic insertion of blank lines in code to improve
readability [29] whereas Sasaki reorders programming statements
to improve readability by declaring variables immediately before

their utilization [27]. Several researchers examine the naming of
identifiers [5, 9, 21, 26]. Relf’s tool encourages the developer to
improve variable and method names [26]. Binkley observes that
camel case is easier to read than underscore variables [4]. Jones
looks at the issues with operator precedence in code readability
[18].
While human assessment remains the gold standard of code
readability, automated metrics often serve as a proxy. Several
studies strive to create code readability metrics so that a computer
program determines the readability [8, 14, 24].

Incorporating these metrics into static analysis tools, development
environments, and IDEs provides an inexpensive assessment.
Substituting the computer for a human produces problems.
Metrics using character counts or dictionary words might score a
variable named “something_confusing” or “something_vague” as
equally readable as a variable that is “exactly_what_i_mean.”
While a statistical approach to readability metrics is helpful, these
measures do not reveal the programmer’s intention.

2.1 Comparison to other techniques
Fagan Inspections, Code Reviews and Pair Programming are other
techniques that improve code quality as summarized in Table 1.
Fagan Inspections are a proven, time intensive process for finding
defects where a committee of developers reviews code [15].
Inspections often include programming style guides and coding
standards. While the author is present, the emphasis is on defect
identification, not revealing why reviewers might be confused by
the code. Code Reviews are a popular, light-weight process where
one developer reviews code before it is committed to the master
branch or trunk of a source code management system [11]. The
author receives a list of suggested changes or issues to fix. Since
the author is not present, the author does not see the process the
reviewer goes through to understand the code. Developers
primarily use code reviews for bug detection [1, 11], not for
training developers how to write readable code. Pair
programming occurs when two developers write the code at the
same time. Pair programming enables continuous reviewing of
code, but doesn’t provide a fresh perspective to reveal issues for
which the authors are blind to observe. [10] Resistance to
adoption comes either from management who sees it as more
expensive than solo programming or from programmers who do
not like the social implications of the process.

Note: Bacchelli and Bird report that programmers thought the
purpose of code reviews is to find defects, when in reality the
programmers are increasing their understanding of the code [1]. If
this is the main benefit of code reviews, it is possible to design
other mechanisms to increase code understandability more
efficiently than the code review technique.

Perspective-Based-Reading reviews requirements documents from
prescribed roles such as user, developer, and tester [2]. A
developer will convert requirements into a design and a tester
converts requirements into a test plan in order to determine if

there are omissions and defects in the requirements.

Yet the question remains, “Can the relevant community
understand and maintain the code?” Thus we can ask ourselves,
“how do we know if our code is readable?

3. CODE READABILITY TESTING
The technique proposed here uses an experienced programmer to
read code samples by thinking out loud and expressing the
reader’s thought process in understanding the code. During the
session, the author of the code observes if and where difficulties
emerge. At the end of the session, the two programmers discuss
approaches to improve code readability. This process reveals to
the code author how another programmer parses and understands
the author’s code [28].

1. The author tells the reader the main use case, story card,
or functionality produced. The author does not explain
the design or the code.

2. The author indicates which files were added or
modified. Starting with test cases helps the reader
understand how the code is used by client code.

3. The reader reads the code aloud and explains the
reader’s mental thought process. If the code is unclear,
the reader speculates on the intention of the code. The
reader verbally describes how he or she thinks the code
works and explains his or her thought process. Voicing
questions helps focus the reader and author. If the reader
does not understand a line of code due to unfamiliar
programming syntax, the reader asks the author what
the operation does.

4. The author does not respond to what the reader is
thinking or asking. The author can take notes about
what makes particular sections confusing.

5. At the end, the reader confirms with the author that the
reader properly understands the code. The author then
asks the reader any clarifying questions about the
experience.

6. The author and the reader discuss how to improve the
code.

The Usability Testing technique [23] from Human Computer
Interaction serves as a model for this process. In usability testing,
user experience designers watch representative users attempt tasks
on a prototype or the actual interface of a product. The researcher
observes the user to determine what is obvious and what confuses
the user. In particular, the user’s natural interaction with the

system informs natural affordances for the user experience design.
When the system deviates from user expectations, indicate
opportunities for improved design. In Code Readability Testing,
the product is the source code, and the user is another developer.

The ideal reader represents future developers and those who will
maintain the system. For the typical team, developers on the same
team serve as ideal readers. For an open source project, core
developers and contributors serve as ideal readers. The ideal
reader possesses experiences similar to those of the author, and is
proficient with the programming language, framework, and
libraries used. If programmers expect their code to be routinely
read by less experienced programmers, then novices would be
ideal readers.

4. FIELD STUDY
The researcher followed the Code Readability Testing with each
programmer in four separate one-on-one sessions to assess
effectiveness and observe improvements over time. The
programmers were 21 master students enrolled in the “Craft of
Software Development” course at Carnegie Mellon University in
Silicon Valley during the Spring 2013 semester.
The researcher scheduled each session for thirty minutes, spaced
three weeks apart, thus producing 84 data points. For each
session, the researcher asked the students to bring “production
ready” code, software that was ready to be released on a real
project. The students selected their own projects to work on. At
the end of each session, the researcher recorded the review’s
duration, the number and type of issues detected, and assessment
of the overall readability score.

The student’s professional development experience ranged from
zero to eight years. The average number of years of experience
was three years.

4.1 Readability Score
This paper defines code readability as the amount of mental effort
required to understand the code. After examining the code, the
researcher assigned a readability score following this scale:

4. Easy to read
3. Pretty easy to read
2. Medium difficulty
1. Very challenging

In existing studies [13, 16, 24, 27, 29], there is no standard
readability definition or score. In both the Buse and Dorn studies,
participants rate code on a Likert scale from “very unreadable” 1

Table 1: Comparison to Other Techniques

Technique: Readability Testing Code Review Fagan Inspection Pair Programming

Purpose: Understand code Find defects,
Understand code

Find defects High quality code

Roles: Author
Reader

Author
Reviewer

Author
Moderator
Inspector (2+)
Recorder
Reader / Timekeeper

Author
Author

Feedback to the author is Synchronous Asynchronous Asynchronous NA

to “very readable” 5, from “unreadable” to “readable” [8, 14]. The
participants define their own meaning for readable.

In using this scale, the researcher noticed that the duration of the
review correlated with the amount of effort required. For example,
reviewing “easy to read” code didn’t take much time to review.
The average length was 8 minutes with 4 minutes variance.
Reviewing “very challenging” to read code often consumed the
whole session. The correlation between readability score and the
time to review was 0.77
Typically “easy to read” code presents the reader with a simple to
follow narrative, keeping a few items in short term memory.
“Very challenging” code obscures the programmer’s intention.
When the reader grabs a sheet of paper and manually executes the
computer program by writing down variable values in order to
understand the program logic, then the code is “very challenging”
to read.

There are common solutions to many programming problems.
“Very challenging” code might avoid typical solutions or typical
constructs for a solution. When the code’s solution is different
from the reader’s expectation for the solution, the reader finds the
code “very challenging.”

After reviewing the data, the researcher grouped “Pretty easy to
read” and “Easy to read” code samples as “readable” code and
groups “Very challenging” and “medium difficulty” code samples
as “unreadable” code. For unreadable code, the code clearly
required rework before submission on a project. When comparing
these two groups, the code samples were indeed, night and day.

5. RESULTS
Research Question 1: Would programmers who repeatedly follow
Code Readability Testing increase the readability of their code?

After graphing trends in the data, the researcher lumped the data
into four groups: programmers who initially wrote readable code
and made small improvements, programmers who initially wrote
unreadable code and made large improvements, programmers
whom initially wrote unreadable code and continued to do so, and
programmers whose results are not clear.

Result Count

Readable to readable (with small improvements) 11

Unreadable to readable (with large improvements) 5

Unreadable to unreadable 1

Results are not clear 4

Total 21

Starting from the first session, 11 of the programmers wrote
readable code consistently. While small improvements can be
made to the code, the reader easily understood the code. Of these
11, five progressed from “pretty easy to read” to “easy to read” as
represented by Figure 1. The process did not hurt the
programmer’s ability to write code.

Five programmers initially produced “unreadable code” but over
time started improving and finished by writing “readable code” as
illustrated by Figure 2. For some, immediate changes occurred,
whereas for one programmer, the change required a few sessions.

One programmer consistently wrote “unreadable code” during
each session as shown in Figure 3. While the programmer

improved variable and method naming, the programmer ignored
feedback such as breaking multiple nested for loops and if
statements. Instead of taking the time to increase readability, the
participant reasoned, “I want my code to be as efficient as
possible.” (Ironically, by only making readability improvements,
the readable code was more efficient than the original code.)
Four of the data plots were “all over the place.” While two of
them trended towards more “readable code,” the researcher
classified them as outliers. Considering the entire sample size, this
means that 16 of the 21 programmers improved their ability to
write readable code. When considering the 10 programmers who
could benefit from improving readability testing, five achieved
large improvements.

Figure 1: Programmer #16 consistently wrote “readable”
code with small improvements

Figure 2: Programmer #11 started by writing “unreadable”
code and progressed to “readable” code

Figure 3: Programmer #1 continued to write “unreadable”
code

Looking only at the first and last sessions, then an interesting
result emerged. During the first session, 13 programmers wrote
readable code and all still wrote readable code at the end. During
the first session, eight programmers wrote unreadable code, and at
the end two wrote unreadable code, and six wrote readable code.

Result 1: Most programmers who write “unreadable” code
significantly improve and start writing “readable” code after four
sessions. Programmers who initially write “readable” code also
improve their ability to write readable code.

Research Question 2: What kinds of issues does Code Readability
Testing detect?

In reviewing the notes on the 84 sessions, the researcher classified
suggestions and feedback based upon feedback type. The
researcher relied on unstructured interview notes, not an
inspection checklist. The following table prioritizes the feedback
by the frequency of each feedback type across all 84 sessions. For
example, 45 of the 84 reviews mentioned altering the name of
variables as a means improve readability.

Improve code readability by Number of Reviews

Improving variable names 45 / 84

Improving method names 25/ 84

Extract method to reduce code
duplication

26 / 84

Simplifying if conditions 10 / 84

Reducing if nesting 11 / 84

Simplifying loop conditions 11 / 84

Reducing loop structures 5 / 84

Improving class names 3 / 84

Re-sequencing method arguments 1 / 84

Simplifying data structures 1 / 84

Although not a specific goal, readability testing found nine defects
in eight of the code samples.

Result 2: Readability testing detects readability issues that are
solved by improvements to variable names, improvements to
method names, the creation of new methods to reduce code
duplication, simplifying if conditions and nesting of if
statements, and simplifying loop conditions.

Research Question 3: How time-consuming is readability testing?

The reader’s subjective experience was that processing “easy to
read” code was not time consuming. If a system is composed
entirely of “easy to read” code, then the overhead of this process
is small. If a system has “very challenging” sections of code, then
it is worth reviewing. When the reviewer detects unreadable code,
terminating the process allows a discussion of ways to improve
code readability.

Readability Score Median time on review

Very challenging * 30 minutes

Medium difficulty 20 minutes

Pretty easy to read 11 minutes

Easy to read 8 minutes

Note: the sessions were limited to 30 minutes, the length of the
meeting. Often another session was scheduled after any given
session. If the reader could not understand the code after 30
minutes, the session was ended.

Result 3: For readable code, readability testing is
straightforward. For unreadable code, the process takes
significant time. Once unreadable code is detected, the reader
and the author can agree that the code needs rework and end the
session early.

The Programmers’ Perceptions
Research Question 4: How did programmers perceive Code
Readability Testing?

At the end of the four sessions, the programmers answered an
anonymous survey about their experience with 20 of the 21
participants completing the survey. The self-assessment exposes
the programmers’ perception of the technique.

Question: “Was it worth your time or not worth your time?”
20 out of 20 say that following the process was worth their time.

Question: “Why was it worth or why was it not worth your time?”
The free-text responses were grouped according to themes. If
participants mentioned multiple reasons, then each reason counts
in each theme.

Code Readability Testing…

Count

allows me to see areas of improvement to increase
code readability

9

allows me to see a different perspective on my code 7

provides guidance by someone with more experience 4

motivates me to improve the readability of my code 3

allows me to know if my code was understandable 3

allows me to improve my programming speed 1

increases collaboration of software development
process

1

Question: “Did you learn how another developer reads and
understands your code?”

Out of the 20 participants, 18 participants said yes, and two
skipped the question.

Question: “How has this affected the way you write software?”

I now…. Count

choose clearer variable and method names 9

consider the needs of future readers 7

think about the code narrative 5

write shorter methods 2

don’t repeat yourself (DRY) 2

avoid deep nested if-else logic 1

re-read code before committing 1

isolate complex logic into a method 1

Questions: “Did you see the reader struggle with understanding
your code?”
Out of the 20 participants, 10 participants said yes.

Question: “If so, how did it make you feel?”

I am… Count

motivated to write more readable code 5

inspired as it was revealing and insightful 4

Result 4: Programmers think following readability testing is
worth their time. Their ability to write readable code increases.
They articulate concrete improvements to the way they write
code. When programmers see a reader struggle to understand
their code, the programmers are willing to write readable code
and inspired by another developer’s point of view.

6. THREATS TO VALIDITY
6.1 Construct Validity
Code Readability Testing has the reviewer “think aloud” as they
read through the code. The “think aloud” activity might not mirror

the process a programmer uses when they read code to
themselves.

6.2 Internal Validity
a. The selection of the reviewer – in order to remove the difficulty
of inter-reviewer reliability, there is only one reviewer in this
study. The reviewer is the researcher, which leads to possible
researcher bias. The results might change with a different
reviewer. Another reviewer might find more or fewer issues.
Another reviewer might be more or less experienced at reading
other people’s code.

The reviewer has professional experience in C, C++, Java, and
Ruby. The reviewer is able to read and understand the provided
C#, Javascript, Objective C, Python, and Dart code. When the
reviewer did not understand programming language syntax or
idioms, the reviewer asks the author for clarification. While the
reviewer is able to understand Javascript code, a more
experienced Javascript programmer might find issues not
detected.

b. The selection of programming assignments – the programmers
select what to work on. The difficulty level of each session might
not be consistent.

c. The selection of programming languages – this study verifies
that the approach works within a variety of programming
languages and problem domains. For future research, constraining
to a particular language may yield stronger insights.

d. Influence from other graduate courses – discussions in the
concurrent metrics course and the craft of software development
course about code quality might affect the results by sensitizing
students to the need to write readable code.

6.3 External Validity
The participants were master of software engineering students.
Their professional development experience ranged from zero to
eight years. The average number of years of experience was three
years. The correlation between years of industry experience and
improvement was 0.31 showing little relationship between
improvement and years of industry experience. In fact, the two
participants with the most industry experience (seven years and
eight years) both dramatically improved their ability to write
readable code. Since all the students were still at the beginning of
their careers, the drastic improvements in writing readable code
might not transfer to more experienced programmers.

7. FUTURE RESEARCH
Several of the programmers appreciate the value a more
experienced developer providing feedback. Future work could
reveal the results when the reader and the author possess similar
expertise, or if the reader possesses less expertise than the author.
If code needs to be readable by less experienced peers, then
learning how less experienced programmers read code should
contain valuable feedback.
Removing the researcher from the reader role would remove
researcher bias. Perhaps students could act as readers for each
other if they’re given training.
Future work could entail a direct analysis between code reviews
and readability testing. Next time, all the programmers could
finish the same programming exercise and the researcher could
directly compare the results from the two techniques.

One subject persistently wrote “unreadable” code. The subject
defended his strategy because “I want my code to be as efficient
as possible.” Future work could examine how prevalent is this
attitude of writing “efficient” but unreadable code, determine
where its origins, and suggest possible mitigation steps. In 1974,
Knuth proclaimed that premature optimization is the root of all
evil [20], yet the problem remains today.

8. CONCLUSIONS
Code readability testing addresses the question, “Is my code
readable?” by exposing the thought process of a peer reading the
code. In this study, 21 programmers followed Code Readability
Testing in four sessions. Most programmers writing “difficult to
read” code became programmers writing “easy to read” code after
three sessions. Programmers writing “easy to read” code
improved their skill. This study identifies several common fixes to
unreadable code including improvements to variable names,
improvements to method names, the creation of new methods to
reduce code duplication, simplifying if conditions and structures,
and simplifying loop conditions. The programmers reported that
the technique is worth their time and articulated how readability
testing alters their programming habits.

9. REFERENCES
[1] Bacchelli, A., and Bird, C. 2013. Expectations, outcomes,

and challenges of modern code review. Proceedings of the
2013 International Conference on Software Engineering.

[2] Basili, V., Green, S., Laitenberger, O., Lanubile, F., Shull, F.,
Sørumgård, S., and Zelkowitz, M. 1996. The Empirical
Investigation of Perspective-Based Reading.

[3] Beck, K. 2006. Implementation Patterns: Addison-Wesley
Professional.

[4] Binkley, D., Davis, M., Lawrie, D., & Morrell, C. 2009. To
camelcase or under_score. Program Comprehension. IEEE
17th International Conference on Program Comprehension.
ICPC '09.

[5] Binkley, D., Lawrie, D., Maex, S., & Morrell, C. 2009.
Identifier length and limited programmer memory. Science of
Computer Programming, 74, 7, 430-445.

[6] Bourque, P., and Dupuis, R. 2004. Guide to the Software
Engineering Body of Knowledge. IEEE Computer Society
Press.

[7] Brooks, F. 1975. The Mythical Man-Month. Addison-
Wesley.

[8] Buse, R. P. L., and Weimer, W. R. 2010. Learning a Metric
for Code Readability. IEEE Computer Society.
DOI=10.1109/TSE.2009.70

[9] Butler, S., Wermelinger, M., Yu, Y., & Sharp, H. 2010.
Exploring the Influence of Identifier Names on Code
Quality: An Empirical Study. Proceedings of the 2010 14th
European Conference on Software Maintenance and
Reengineering.

[10] Cohen, J. 2013. Does Pair Programming Obviate the Need
for Code Review?
http://blog.smartbear.com/programming/does-pair-
programming-obviate-the-need-for-code-review/

[11] Cohen, J., Teleki, S., & Brown, E. 2006. Best Kept Secrets of
Peer Code Review: Smart Bear.

[12] Computer Science Curriculum 2008: An Interim Revision of
CS 2001. 2008. ACM and the IEEE Computer Society.

[13] Crookes, D. 1987. Generating readable software. Software
Engineering Journal. Vol. 2, 64-70.

[14] Dorn, J. 2012. A General Software Readability Model.
Masters Thesis. University of Virginia.

[15] Fagan, M. 1986. Advances in Software Inspections. IEEE
Transactions on Software Engineering. Vol. SE-12, No. 7.

[16] Hansen, M., Goldstone, R., & Lumsdaine, A. 2013. What
Makes Code Hard to Understand? Cornell University
Library.

[17] Hunt, A., and Thomas, D. 2000. The pragmatic programmer:
from journeyman to master: Addison-Wesley Longman
Publishing Co., Inc.

[18] Jones, D. M. 2008. Operand names influence operator
precedence decisions. CVu.

[19] Kernighan, B. W., & Plauger, P. J. 1982. The Elements of
Programming Style. McGraw-Hill.

[20] Knuth, D. E. 1974. Computer programming as an art.
Communications of the ACM, 17(12), 667-673.

[21] Liblit, B., Begel, A., & Sweeser, E. 2006. Cognitive
Perspectives on the Role of Naming in Computer Programs.
Proceedings of the 18th Annual Psychology of Programming
Workshop, (Sussex, United Kingdom.)

[22] Martin, R. C. 2008. Clean Code: A Handbook of Agile
Software Craftsmanship. Prentice Hall PTR.

[23] Nielsen, J. 1993. Usability Engineering. Morgan Kaufmann
Publishers Inc.

[24] Posnett, D., Hindle, A., & Devanbu, P. 2011. A simpler
model of software readability. Proceedings of the 8th
Working Conference on Mining Software Repositories.

[25] Pyster, A. and et al. 2009. Graduate Software Engineering
(GSwE2009) Curriculum Guidelines for Graduate Degree
Programs in Software Engineering. Stevens Institute.

[26] Relf, P. A. 2005. Tool assisted identifier naming for
improved software readability: an empirical study. 2005
International Symposium on Empirical Software
Engineering.

[27] Sasaki, Y., Higo, Y., & Kusumoto, S. 2013. Reordering
Program Statements for Improving Readability. 17th
European Conference on Software Maintenance and
Reengineering (CSMR).

[28] Sedano, T. 2011. Code Readability Testing Process.
http://sedano.org/toddsedano/2011/03/30/code-readability-
process.html

[29] Wang, X., Pollock, L., & Vijay-Shanker, K. 2011. Automatic
Segmentation of Method Code into Meaningful Blocks to
Improve Readability. Proceedings of the 2011 18th Working
Conference on Reverse Engineering.

[30] Weinberg, G. M. 1982. Understanding the Professional
Programmer. Dorset House.

