Carnegie Mellon University
Browse
file.pdf (1.11 MB)

Control Synthesis for Dynamic Contact Manipulation

Download (1.11 MB)
journal contribution
posted on 2005-04-01, 00:00 authored by Siddhartha SrinivasaSiddhartha Srinivasa, Michael A. Erdmann, Matthew T. Mason
We explore the control synthesis problem for a robot dynamically manipulating an object in the presence of multiple frictional contacts. Contacts occur both between the object and the robot, and between the object and the environment. Two sets of constraints govern the evolution of the system — contact velocity constraints that prevent separation and cause rolling, and, contact force constraints that arise from Coulomb friction. We combine the constraints in the space of contact accelerations, obtaining bounds on the robot acceleration as a function of the system state. We solve the motion planning problem by providing a feasible path for the system and generating the controls and the system trajectory by time-scaling the feasible path. We provide examples that illustrate the merits and limitations of our technique and discuss some of the open problems.

History

Publisher Statement

"©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE."

Date

2005-04-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC