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Introduction

We have developed a set of “design principles” to guide the development of new
creativity support tools — that is, tools that enable people to express themselves creatively
and to develop as creative thinkers. Our goal is to develop improved software and user
interfaces that empower users to be not only more productive, but more innovative.
Potential users of these interfaces include software and other engineers, diverse scientists,
product and graphic designers, architects, educators, students, and many others.
Enhanced interfaces could enable more effective searching of intellectual resources,
improved collaboration among teams, and more rapid discovery processes. These
advanced interfaces should also provide potent support in hypothesis formation, speedier
evaluation of alternatives, improved understanding through visualization, and better
dissemination of results. For creative endeavors that require composition of novel
artifacts (e.g., computer programs, scientific papers, engineering diagrams, symphonies,
artwork), enhanced interfaces could facilitate exploration of alternatives, prevent
unproductive choices, and enable easy backtracking.

Some of these design principles have appeared previously [Myers 2000][Shneiderman
2000][Resnick 2005][ Yamamoto 2005][Hewett 2005][Selker 2005]. These principles
have emerged through collaborations with a large number of colleagues, in the
development of many different creativity support tools, both for children and adults.
Some of the principles are also relevant to tools for creating software in general, often
called “User Interface Software Tools,” but targeting tools specifically for creativity
highlights new perspectives and requirements.

In our analysis, we focus especially on "composition tools" -- that is, computational
systems and environments that people can use to generate, modify, interact and play with,
and/or share both logical and/or physical representations. A creative composition process
is not a routine production process that can be prescribed, and what tools and
representations people use strongly affect their courses of actions and thought processes
[de la Rocha, 1985][Zhang, 1997][Shirouzu et al. 2002].



While it is difficult to study “creativity” itself, we can study the process by which
creative people and teams work, and embody their best practices in tools that can aid
others in emulating those processes. Examples include the IDEO design team
“brainstormer” process has been nicely documented and used by many other
organizations [Kelly 2001] and the widely-used TRIZ method for systematic innovation
[Mann 2002]. Strategies for studying creativity support tools are discussed in this
report’s section titled “Creativity Support Tool Evaluation Methods and Metrics.”

1.  Support Exploration

An important requirement for creativity is to be able to try out many different
alternatives. Almost by definition, creative work means that the final design is not
necessarily known at the outset, so users must be encouraged to explore the space
[Fischer 1994]. This has a number of implications on the tools. Exploratory programming
has been promoted for a long time [Sheil 1983], but most tools still focus on projects
where the outcome is well-known in advance. In the terms of Green and Petre [Green
1996], we want systems with “low viscosity” — that make it easy to change all aspects of
the design.

First, it must be very easy to try things out, and then backtrack when unsuccessful. This
means that the tools must be trustworthy so that users are comfortable trying things. For
example, a very good Undo capability is required in the tools. Implementing Undo can be
quite difficult however [Myers 1996], so many research systems leave it off. The rich
histories that are required to support undo can also be useful for creating programming-
by-demonstration interfaces [Myers 1992], where users teach the system how to automate
repetitive tasks by giving examples. Previewing mechanisms [Terry 2002] and set-based
operations [Terry 2004] have also been proposed and tested to support such processes.

A second requirement is that the tools be “self-revealing” so that it is clear to users what
can be done. If the flexibility is not apparent, it will not be used. This is especially
important as users are learning the tools. The tools must also be facile and
unencumbering, so that expert users can try out the different alternatives very quickly.
Finally, tools must be pleasurable and fun to use. When people are stressed or
concentrating too much effort on how to use the tools themselves, then they will have less
cognitive resources left over for use on finding creative solutions to their tasks.

Spreadsheets are famous for giving people an ability to compare results in what-if
scenarios [Brown 1987], by enabling the user to easily separate what will stay fixed (the
formulas) from what should vary (the values to be explored). In the user interface realm,
tools such as Flash and Visual Basic are popular because they allow prototypes to be
created, evaluated and modified quickly.

Another way to support exploration is to make it very fast to “sketch” out different
alternatives at the early stages of design. Professional user interface designers will often
try out dozens of ideas by drawing on paper or a whiteboard, before starting to write code



for a real implementation. The goal is to allow a partial effort to get a partial result
quickly. Tools to facilitate this kind of sketchy exploration include Silk [Landay 1995]
and Denim [Lin 2002], which specifically focus on sketching screens and storyboards of
interactive behaviors.

Supporting exploration requires functionality made available through careful interaction
design. We view a computational tool as something that provides materials with which
users interact to create a situation that “talks back to the users” [Schoen 1983][Nakakoji
2000a]. Tools for fostering, not obstructing, creativity need to be designed around the
understanding of what representations users need to interact with [Yamamoto 2005].

The interaction design of a tool influences a user's cognitive process. By interaction
design, we mean to determine the representations and operations of an application system
[Yamamoto 2005]. Systems for supporting creative processes need to enable users not
only to compose artifacts, but also to think of what to compose as artifacts [Nakakoji
2005]. Historically, existing tools and application systems have been mostly used to
digitally compose artifacts. Examples are word-processing software, image-processing
software, or spreadsheet applications. Elaborated 3D CAD systems are found effective in
helping architects to compose solutions but obstructive to their creative exploration
[Lawson 1994].

2. Low Threshold, High Ceiling, and Wide Walls

Effective tool designs should make it easy for novices to get started (low threshold) but
also possible for experts to work on increasingly sophisticated projects (high ceiling)
[Myers 2000]. The low threshold means that the interface should not be intimidating, and
should give users immediate confidence that they can succeed. The high ceiling means
that the tools are powerful and can create sophisticated, complete solutions. Too often
tools that enable creative thinking may be quite hard to learn (they don’t have a low
threshold). Instead, they focus on providing numerous powerful features so that experts
can assemble results quickly.

Now, we add a third goal: wide walls. That is, creativity support tools should support and
suggest a wide range of explorations. By not including predefined widgets, the Flash tool
encourages designers to explore many different ways to control the interaction, instead of
just using buttons and scroll bars. Carnegie Mellon’s Alice tool has enabled the creation
of a wide variety of three-dimensional stories, games, and interactive Virtual Reality
experiences [Conway 2000], and the Disney/Carnegie Mellon Panda3d System
(panda3d.org) has allowed theme park, online, and classroom content creation. When
kids use MIT’s Programmable LEGO Bricks, for instance, they can create anything from
a robotic creature to a “smart” house to an interactive sculpture to a musical instrument
[Resnick 1993][Resnick 1996]. We want users to work on projects that grow out of their
own interests and passions — which means that the creativity support tools need to support
a wide range of different types of projects.



When evaluating the use of creativity support tools, we consider diversity of outcomes as
an indicator of success. If the creations are all similar to one another, we feel that
something has gone wrong. And if, after finishing one project, users feel that they are
“done” with the tool, again we feel as if we have failed. Creativity support tools should
define a space to explore, not a collection of specific activities. And our hope is that users
will continually surprise themselves (and surprise us too) as they explore the space of
possibilities. As an example, it was a surprise that kids would use MIT’s Programmable
LEGO Bricks to measure their speed on rollerblades, or to create a machine for polishing
and buffing their fingernails [Resnick 2000].

The problem with systems that aim for a low threshold is that they usually are quite
limited in what they can do, so users are either constrained, or else need to find “work-
arounds” to achieve what they want. Tools with high ceilings tend to require significant
training and effort to learn how to use. And wide walls means that there are very general
primitives that users must learn how to combine.

One strategy to try to achieve all three is to explicitly include elements and features that
can be used in many different ways. The design challenge is to be specific enough so that
users can quickly understand how to use the features (low threshold), but general enough
so that users can continue to find new ways to use them (wide walls). The tool should
help users learn how to use the features, for example with mouse-overs, tool-tips, and a
variety of examples, so users can make the transition necessary to understand the variety
of possible uses.

3. Support Many Paths and Many Styles

When MIT researchers were testing an early version of the computer-controlled LEGO
technology, they tested prototypes in a fourth-grade classroom where students wanted to
build an amusement park. One group of students decided to create a merry-go-round.
They carefully drew up plans, built the mechanisms, and then wrote a program to make
the ride spin round-and-round whenever someone pressed a touch sensor. Within a
couple hours, their merry-go-round was working. Another group of students decided to
build a Ferris wheel. But before the ride was working, they put it aside and started
building a refreshment stand next to the Ferris wheel. The developers were concerned:
the refreshment stand did not have any motor or sensors or programming. They worried
that the students would miss out on some of the powerful ideas underlying the
LEGO/Logo activity. But they didn’t interfere. After finishing the refreshment stand, the
group built a wall around the amusement park, created a parking lot, and added lots of
little LEGO people walking into the park. Then, finally, they went back and finished their
Ferris wheel.

These two groups represent two very different styles of playing, designing, and thinking.
Turkle and Papert [Turkle 1990] have described these styles as “hard” (the first group)
and “soft” (the second). The hard and soft approaches, they explain, “are each
characterized by a cluster of attributes. Some involve organization of work (the hards



prefer abstract thinking and systematic planning; the softs prefer a negotiational approach
and concrete forms of reasoning); other attributes concern the kind of relationship that the
subject forms with computational objects. Hard mastery is characterized by a distanced
stance, soft mastery by a closeness to objects.”

Similarly, faculty at CMU through a decade of working with creative people at Walt
Disney Imagineering, Electronic Arts, and in CMU’s Entertainment Technology Center
(ETC) (see www.etc.cmu.edu) have identified similarities and differences between “left
brain” (logical, analytical) and “right brain” (holistic, intuitive) thinkers. You might think
that people who do Art and Graphic Design would be the “soft” or “right brain” group (as
people who can draw), versus people who do Science and Engineering (as people who
can do math). But in fact, people who focus on art and science often have more in
common with each other, as people who focus on finding the “truth”, compared to
Graphic Design and Engineering, who are people who try to solve problems, often within
constraints such as budget, time, and client demands.

In many math and science classrooms, the hard approach is privileged, viewed as
superior to the soft approach. Turkle and Papert argue for an “epistemological pluralism”
that recognizes the soft approach as different, not inferior. We should take a similar
stance in the design of new creativity support tools, putting a high priority on supporting
learners of all different styles and approaches. We should pay special attention to make
sure that technologies and activities are accessible and appealing to the softs; since math
and science activities have traditionally been biased in favor of the hards, we want to
work affirmatively to close the gap.

4.  Support Collaboration

An important implication of this diversity is the need to provide support for collaboration
in the tools. In all of our projects, in schools, and in the “real world,” most creative work
is done in teams. At CMU, the ETC specifically focuses on creating teams that include
people with various strengths. But diversity of talent will appear in all teams. It is
important that the creativity support tools allow each person to contribute using their own
talent. For example, the Building Virtual Worlds course at Carnegie Mellon
(etc.cmu.edu/curriculum/bvw.html) requires creating 3D interactive virtual worlds, which
combine art work, sound design, script writing, and programming. The tools allow team
members to work on their own parts in parallel, but more work is needed on supporting
the integration and iteration which results from these kinds of activities.

With the advent of the Internet, another form of “collaboration” has become prevalent:
finding good material from others by using search tools like Google. Creativity support
tools should foster a community of users to share their creations, and the tricks and
techniques they have discovered for using the tools. Research shows that when
confronted by a challenge, experienced and novice creators alike will go to Google to see
if they can find the answer. And with professional tools, often they will find a host of
examples, discussion and documentation posted by other users. Some research tools have



built-in techniques to help with posting creations (e.g., Agentsheets.com [Repenning
2004], Alice.org [Conway 2000]), and current research is looking at how other people’s
examples can help people learn new systems [Stylos 2005]. Commercial tools such as
Spotfire (http://www.spotfire.com) provide numerous strategies for sending results by
email and posting results to a website with an automatically generated chat window to
promote discussion. Social and psychological factors such as trust and appropriation play
an important role in support of collaborative creativity [Nakakoji 2000b][Shneiderman
2000].

The NSF is already funding a number of “collaboratories” to help bring scientists
working in the same field or on related problems together. Examples include The Gene
Ontology project (http://www.geneontology.org/), the Protein Data Bank
(http://www.rcsh.org/pdb/), the Collaboratory for Research on Electronic Work
(http://www.crew.umich.edu/), etc.

5.  Support Open Interchange

The creative process will not usually be supported by a single tool, but rather will require
that the user orchestrate a variety of tools each of which supports part of the task.
Creativity support tools should seamlessly interoperate with other tools. This includes the
ability to easily import and export data from conventional tools such as spreadsheets,
word processors and data analysis tools, and also with other creativity support tools. This
requires that the data formats in the files be open and well-defined. Fortunately, the
increasing pervasiveness of XML and projects such as the Gene Ontology
(http://www.geneontology.org/) (which provides a controlled vocabulary to describe gene
and gene product attributes in any organism) show promise in this direction.

Another form of openness allows extensibility of the tools themselves. Professional tools
increasingly provide a “plug-in” architecture, or an “open data model” [Myers 1998] to
support extensibility. This has long been available for artistic tools like PhotoShop to
allow capable creative people to define their own operations that work on the shared data
types. Another example is the Eclipse tool (www.eclipse.org), which is not just a Java
programming environment, but actually is a kernel into which many pieces can be
plugged together to create a wide variety of environments to support different activities.
The COM interfaces for Microsoft Office tools provide similar extensibility, although
these are usually used to make business operations more efficient, rather than more
creative. The professional suite of tools from companies such as AutoDesk
(http://www.autodesk.com) and Adobe (http://www.adobe.com), are largely designed to
facilitate taking the results from one tool into another.

Integration of operations across tools could allow smoother coordination across windows
and better integration of tools. We have proposed operations such as getting an English
definition, a French translation, or a medical dictionary report just by clicking on a word
[Shneiderman 2000], and a “smart” clipboard that allows easy transformation of
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structured information among many applications just using the familiar copy-and-paste
operation [Stylos 2004].

6. Make It As Simple As Possible - and Maybe Even Simpler

In some ways, this design principle seems obvious. Who wants needless complication?
But there is no doubt that technology-based products have become more and more
complex. One reason is “creeping featurism”: advances in technology make it possible to
add new features, so each new generation of products has more and more features. This
trend is reinforced by the belief among marketing professionals that it’s quite hard to sell
a product as “simpler,” but much easier to sell it as “containing more features.”

A related problem is getting a simpler design/tool past the “gatekeeper experts.”
Particularly in technical fields like Computer Science, a great deal of the self-image of
the practitioners has historically been linked to their ability to master complex tools
themselves. Later, simpler (and better designed) tools are often denigrated as “toys” — for
example, while many would find this hard to believe, the introduction of the computer
mouse was widely derided at the time by “serious” computer scientists.

We yearn for a return to the clean usability of the Macintosh of the 1980s. We see a role
for complexity: we make use of ever-more complex technologies, and we want to help
users accomplish complex tasks. But we want the user experience to be simple. We try to
develop systems that offer the simplest ways to do the most complex things.

We have found that reducing the number of features can actually improve the user
experience. What initially seems like a constraint or limitation can, in fact, foster new
forms of creativity. In the mid-1990s, for example, MIT researchers had developed a
Programmable LEGO Brick that was roughly the size of a child’s juice box. It could
control four motors and receive inputs from six sensors. For a sponsor event at the Media
Lab, some interactive decorations for the tables were needed. All of the capabilities of the
Programmable Brick were not necessary, so a smaller, scaled-down version was quickly
developed, roughly the size of a matchbox car. It could control only two motors with
inputs from only two sensors. This was expected to be a short-lived project, since they
“knew” that most users would want more motors and more sensors. But once the scaled-
down version (called a Cricket) was available, people kept finding more and more
creative applications for it, in spite of (or perhaps because of?) its apparent limitations.
Even though the original Programmable Brick was better for certain projects, the
simplicity of the Cricket won out.

7. Choose Black Boxes Carefully

In designing creativity support tools, one of the most important decisions is the choice of
the “primitive elements” that users will manipulate. This choice determines, to a large



extent, what ideas users can explore with the tool — and what ideas remain hidden from
view.

When kids build robots with MIT’s Programmable Bricks, for instance, they learn about
mechanisms and gearing, and they learn about feedback and control. But they generally
don’t learn about the inner workings of motors. The motor remains a black box. If you
wanted to help kids learn how motors work, you should design a construction kit with
lower-level building blocks, so that kids could build their own motors.

Similarly, the choice of the basic “building blocks” in a programming language
determines what kids are likely learn as they use the language. When kids put together
Logo commands like forward and right into instructions like repeat 4 [forward 50
right 90] (to make a square) or repeat 360 [forward 1 right 1] (to make a circle), they
gain a better understanding of programming concepts, and it has been argued that they
also learn important mathematical and geometric concepts [Papert 1980]. But the
primitive command forward is still a black box. Each time the turtle moves, the
computer must calculate new x and y positions from the original x and y positions using
trigonometric calculations. These calculations are hidden from the user. If the goal of the
construction kit were to help kids learn these types of trigonometric calculations, then the
turtle would be a bad black box. But by hiding these calculations inside a black box, the
turtle frees the user to experiment and explore other mathematical and geometric ideas.

All language and toolkit designers face the same challenge. This is closely related to our
point above about floor versus ceiling — the higher-level the primitives, the easier they are
to use, but the less they can do. But even at the same level of capability, there are easier
and more difficult ways to present the same functions. The designers of Alice rejected
using conventional matrix representations for graphical transformations because it is not
understood by the target audience [Conway 2000]. In the HANDS language, animation is
built-in, so characters can be made to move simply by setting a speed and direction,
rather requiring calculations of how far to move with each elapsed time interval [Pane
2002]. Similarly, for the language for programming the Cricket, the original design used
the conventional Red, Green, Blue parameters to setcolor. This representation provides
great power and flexibility, but kids found it difficult to map inputs from a single sensor
into meaningful color values (for example, red for low values, blue/purple for high
values). So a simpler setcolor command was added with just a single input that ranges
from 0 to 100 (with O at the red end of the spectrum, 100 at the blue end), making it easy
for kids to map sensor inputs to colors along the spectrum.. In these three examples, the
goal was to enable the users to achieve a certain effect, not to teach the underlying
principles (linear algebra, physics of motion, or the red-green-blue composition of light),
so the simplifications were appropriate.

8.  Invent Things That You Would Want To Use Yourself

At first blush, this design principle might seem incredibly egocentric. And, indeed, there
is a danger of over-generalizing from your own personal tastes and interests. But we have



found that we do a much better job as designers of creativity support tools when we
ourselves really enjoy using the tools that we are building.

We feel that this approach is, ultimately, more respectful to users of the technology. Why
should we impose on users systems that we don’t enjoy using ourselves? For example,
we are generally skeptical of educational software that, in an effort to encourage students
to reflect on their actions, requires that they annotate each action. We wouldn’t want to
do that with the software that we use, so why should we require it of students? Software
engineering tools that require commenting, rather than encourage it, are similarly disliked
by users.

There is an additional, perhaps less obvious, reason why we try to invent creativity
support tools that we enjoy using ourselves. Creativity support tools can not succeed in a
vacuum: they work best within communities where people share their expertise and
experiences with one another (see this report section titled “Creativity and Distributed
Intelligence” for further discussions of social creativity). When students use creativity
support tools, for example, they require support from teachers, parents, and mentors. In
developing creativity support tools for students, we need to build not only new
technologies, but also communities of people who can help students learn with those new
technologies. And we have found that it is easiest to build those communities if everyone
involved (adults as well as students) enjoy using the technologies. In New York, for
example, groups of MIT alumni have been volunteering their time to help kids at
Computer Clubhouses (after-school centers for youth from low-income communities)
learn to use the Programmable Bricks. The MIT alumni are motivated, in part, by a desire
to help youth in low-income communities. But there is no doubt that they are also
motivated by their own desire to build robots.

9. Balance user suggestions, with observation and participatory processes

Most successful designers seek to understand their users, in order to design products
well-matched to the needs of their users. They invest considerable time observing and
interviewing users, talking with focus groups, asking users for suggestions and feedback
on features, and inviting users to participate in design processes. There are dangers to too
little or too much involvement of the users, so thoughtful and balanced approaches are
needed ([Druin, 2002] [Nielsen 1993] [Shneiderman 2004]).

Some researchers worry that users may ask for impractical or infeasible features. In other
cases, users ask for only incremental changes, not aware of the possibilities of radical
change. With early versions of Logo software in the 1980s, users often suggested new
ways for the turtle to draw — but they never suggested the addition of paint tools.

Another concern is that users may ask for more flexibility than is needed or desirable.
Often, designs with well-chosen parameters are more successful than designs with fully-
adjustable parameters. We are all in favor of giving control to users — but only where
control will really make a difference in their experiences. Sometimes users may request



numerous “local” or specific features without sufficiently recognizing “global” design
imperatives, resulting in a “kitchen sink” otucome (as in “throw in everything but the
kitchen sink™).

One alternative to asking users to suggest features is to observe users interacting with
prototypes, and infer what they want (and don’t want) from their actions. Often, their
actions speak louder than their words. It is usually apparent when users get frustrated,
even if they don’t articulate their frustration. When we observe users repeatedly making
the same “mistake” with a prototype, we sometimes are able to revise the software so that
it behaves in the way that users had expected. In early versions of the Alice system, for
example, users repeatedly made syntax errors and repeatedly asked for the system to “be
smarter” at understanding their typing errors; instead, the system’s designers realized that
having to deal with syntax at all was problematic, and built a completely drag-and-drop
user interface where it was no longer possible to form a syntactically invalid program.

Other design teams have emphasized participatory methods that engage representative
users actively over long periods of time as members of the team [Muller 2002]. These
user representatives may have to invest substantial effort to learn more about design
constraints and possibilities. Evidence is strong that projects that include users in the
design process result in greater acceptance by the broader user community. The greater
acceptance may be due to the insights and more accurate data from users, as well as the
ego investment and sympathy generated by having user representatives as part of the
design team.

10. Iterate, Iterate - Then Iterate Again

Another standard principle of user interface design that we would like to re-emphasize
for creativity support tools is the importance of iterative design using prototypes. In
designing creativity support tools, we put a high priority on “tinkerability” — we want to
encourage users to mess with the materials, to try out multiple alternatives, to shift
directions in the middle of the process, to take things apart and create new versions.

Just as we want users to iterate their designs, we apply the same principle to ourselves. In
developing new technologies, we have found that we never get things quite right on the
first try. We are constantly critiquing, adjusting, modifying, and revising. The ability to
develop rapid prototypes is critically important in this process. We find that storyboards
are not enough; we want functioning prototypes. Initial prototypes don’t need to work
perfectly, just well enough for us (and our users) to play with, to experiment with, to talk
about.

One thing most system buildings and designers do not have a strong enough appreciation
of is the concept of “iterate just enough to do the next test.” It is crucial to be able to
quickly

- observe users with a given iteration of a system

- synthesize design changes as a result of that feedback



- implement (and functionally test) those changes to the tool

and then repeat that process. In a perfect world, one could go around this loop once every
day or week.

In his book Serious Play, Michael Schrage argues that prototypes are especially helpful
as conversation starters, to catalyze discussions among designers and potential users
[Schrage 1999]. We agree. We find that our best conversations (and our best ideas)
happen when we start to play with new prototypes — and observe users playing with the
prototypes. Almost as soon as we start to play with (and talk about) one prototype, we
start to think about building the next. This process requires both the right tools (to
support rapid development of new prototypes) and the right mindset (to be willing to
throw out a prototype soon after creating it).

11. Design for Designers
By creating you become creative.

In designing new creativity support tools, it is important to design for designers — that is,
design tools that enable others to design, create, and invent things [Papert 1980][Resnick
2002] (see also this report’s section titled “Creativity Support Tools for and by the New

Media Arts Community” for a further discussion).

The traditional LEGO construction kit is a model for what we are trying to achieve with
new creativity support tools. With traditional LEGO Kits, users are provided with a
simple set of parts with which they can design and create a diverse collection of
constructions. LEGO Kkits certainly enable users to express themselves creatively, but new
computationally-based creativity support tools go further, enabling users to create not
only static, structural artifacts but also dynamic, interactive artifacts: music, video,
animations, interfaces. Software-based creativity support tools have an added advantage
in that they (and their resulting products) can be distributed widely at low cost.

The analogy with LEGO kits also suggests an important counter-example. In recent
years, a growing number of LEGO kits highlight a specific construction (such as a Star
Wars spaceship or a Harry Potter castle), with many specialized pieces. Although it is
possible to use these Kits to create a variety of constructions, many kids build the model
suggested on the package, or perhaps slight variants, and nothing more. This is analogous
to using a paint-by-numbers Kit. These Kits clearly encourage “hands-on activity,” but
they are less effective (compared with traditional LEGO Kits) at fostering creative
thinking. Our goal is to develop technologies that not only engage users in composing
artifacts, but also encourage (and support) them to explore the ideas underlying their
constructions.

Another example as a model for what our research tries to achieve is paper and pencil as
a tool used by creative practitioners, such as architectural designers. Hand-drawn



sketches and diagrams have been found essential for architects’ creative reflection
[Arnheim 1969][Lawson 1994]. Not only the drawn diagrams, but the process of drawing
helps designers engaging in reflection-in-action [Schoen 1983]. Tools have been
designed, developed and tested to support such sketching processes in several domains,
including architectural design [Gross 1996], software interface and Web page design
[Landay 2001], and industrial design [Hoeben 2005]. Fundamental aspects of sketching
for creative thinking have been identified and applied in non-diagramic domains, such as
writing and movie-compositions, by using two-dimensional spatial positioning as a
representation [ Yamamoto 2005]

Writing software is a creative activity, and the authors of this report are programmers
who try to be creative, so we would like tools that help us creatively write software. This
IS somewhat recursive; since we want creativity support software-writing tools that help
us create creativity support tools for other tasks as well. The tools we create for ourselves
should therefore support all of the guidelines discussed above. Therefore, we should
follow good software engineering practices so that the tools themselves are easily
modified. This has been the focus of much of the research work in creating flexible user
interface software tools [Ousterhout 1994][Myers 1997][Bederson 2004].

12. Evaluation of Tools

One important issue with the design of creativity support tools is how they can be
evaluated (see this report’s section titled “Creativity Support Tool Evaluation Methods
and Metrics”). How do you know if a tool is being helpful? Human-computer interaction
professionals are used to measuring the effectiveness and efficiency of tools, but how do
you measure if it supports creativity? As discussed above, tools that are not effective and
efficient will probably hinder creativity, but it isn’t clear that the reverse will hold. To try
to measure creativity, the Silk system designers evaluated many different properties,
including the number of different designs produced, the variability of the components
used, the variety of questions about the designs from collaborators, etc. [Landay 1996],
but these still do not really get at the quality of the solution. It is still an open question
how to measure the extent to which a tool fosters creative thinking. While the rigor of
controlled studies makes them the traditional method of scientific research, longitudinal
studies with active users for weeks or months seem a valid method to gain deep insights
about what is helpful (and why) to creative individuals [Seo 2005].

We have no delusions that evaluating tools is an easy task, but we also believe that the
potential impact of improved tools would be enormous in amplifying and inspiring
creativity.
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