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Abstract

The objective of automated scoring algorithms for polygraph data is to create reliable and statis-
tically valid classification schemes minimizing both false positive and false negative rates. With
increasing computing power and well developed statistical methods for modeling and classification
we often launch analyses without much consideration for the quality of the datasets and the un-
derlying assumptions of the data collection. In this paper we try to assess the validity of logistic
regression when faced with a highly variable but small dataset.

We evaluate 149 real-life specific incident polygraph cases and review current automated scoring
algorithms. The data exhibit enormous variability in the subject of investigation, format, structure,
and administration making them hard to standardize within an individual and across individuals.
This makes it difficult to develop generalizable statistical procedures. We outline steps and detailed
decisions required for the conversion of continuous polygraph readings into a set of features. With
a relativelly simple approach we obtain accuracy rates comparable to those currently reported by
other algorithms and manual scoring. Complexity that underlines assessment and classification of
examinee’s deceptiveness is evident in a number of models that account for different predictors
yet give similar results, typically “overfitting” with the increasing number of features. While
computerized systems have the potential to reduce examineer variability and bias, the evidence
that they have achieved this potential is meager at best.

1 Introduction

William M. Marston, a psychologist and the Wonder Woman creator, had an idea for an infallible
instrument for lie detection some 25 years before he created this heroine whose magic lasso forces
villains to tell the truth. In 1915 while a graduate student at Harvard University he reported that
blood pressure goes up when people lie. This paved the way for the invention of the polygraph, a
’lie detector’ machine, in the early 1920s by J. A. Larson and L. Keeler[1, 23].

Polygraphs are used by law enforcement agencies and the legal community for criminal inves-
tigations, in the private sector for pre-employment screening, and for testing for espionage and
sabotage. Polygraph proponents claim high accuracy rates of 98% for guilty subjects and 82% for
innocent [2, 26]. These rates are typically calculated by leaving out inconclusive cases and ignoring
the issue of sampling bias, e.g. when the accuracies and inter-raters reliability are calculated using
only subjects for which there is an independent validation of their guilt or innocence (i.e., ground
truth).

The polygraph as an instrument has been recording changes in people’s relative blood pressure,
respiration and the electrodermal response (palmar sweating or galvanic skin response) in some
form since 1926. These psychophysiological responses, believed to be controlled by the autonomic
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nervous system, are still the main source of information from which the polygraph examiners deduce
an examinee’s deceptive or non-deceptive status. The underlying premise is that an examinee will
involuntarily exhibit fight-or-flight reactions in response to the asked questions. The autonomic
nervous system will, in most cases, increase the person’s blood pressure and sweating, and affect
the breathing rate. These physiological data are evaluated by the polygraph examiner using a
specified numerical scoring system and/or statistically automated scoring algorithms. The latter
are the main focus of this report. Current methods of psychophysiological detection of deception
(PDD) are based on years of empirical work, and often are criticized for a lack of thorough scientific
inquiry and methodology.

The objective of automated scoring algorithms for polygraph data is to create reliable and
statistically valid classification schemes minimizing both false positive and false negative rates. The
statistical methods used in classification models are well developed, but to the author’s knowledge,
their validity in the polygraph context has not been established. We briefly describe the polygraph
examination framework and review two automated scoring algorithms relying on different statistical
procedures in Section 2. Section 3 provides some background on statistical models one might
naturally use in settings such as automated polygraph scoring. In Section 4 we evaluate collection
of real-life polygraph data of known deceptive and nondeceptive subjects. In Section 5 we outline
steps and detailed decisions required for the conversion of continuous polygraph readings into a set
of numeric predictor variables and present results of a logistic regression classifier. Our approach
is simpler than other proposed methods, but appears to yield similar results. Various data issues
that are not addressed or captured by the current algorithms indicate a deficiency in validity of
methods applied in the polygraph setting.

2 Background

2.1 The Polygraph Examination

The polygraph examination claims to measure psychophysiological detection of deception (PDD).
It measures some emotional responses to a series of questions from which deception is inferred.
The PDD examination can be divided into three parts: pre-test, in-test, and post-test. During
the pre-test the examiner explains to the examinee the theory of the test and the instrument, and
fomulates the test questions. Experienced polygraphers believe that results may be erroneous if this
part is not conducted properly. An “acquaintance” test is run to demonstrate that the examinee’s
reactions are captured. During the in-test phase, a series of 8 to 12 Yes and No questions are
asked and data are collected. Typically, the same series of questions are asked at least 3 times,
with or without varying the order of the questions. One repetition represents a polygraph chart
or test limited to approximately 5 minutes. In the post-test the examinee’s responses are reviewed
with the examinee; the examiner often obtains a confession from guilty subjects (sometimes from
innocent ones too!). If the examinee provides further explanation regarding his/her responses, then
new questions may be composed and the test repeated [23, 7].

There are three main types of questions. Irrelevant or neutral questions such as “Is today
Tuesday?” are meant to stabilize the person’s responses with respect to external stimuli such as
the examiner’s voice. Relevant questions address the main focus of the examination: “Did you steal
that money?” Comparison, also known as control, questions address issues similar in nature but
unrelated to the main focus of the exam. “Have you ever cheated a friend out of anything?” is an
example of a ’probable-lie’ control question where the examiner is not sure if the subject is lying
or not. For a ’direct-lie’ control question, the examiner instructs the examinee to be deceptive by

2



thinking or imagining an uncomfortable personal incident. Since the topic of each examination
varies, the questions are custom-made for the examinee.

Evaluation of the charts is performed by relative comparison of the responses on the relevant
and control questions. It is expected that the deceptive person will show stronger reactions to
the relevant questions, while the innocent person will be more concerned with control questions
and show stronger reactions on those than on relevant questions. Depending on the test format,
questions appear in different positions in the question sequence.

2.2 Type of Test

There are two broad categories of PDD: specific issue and screening. Specific issue examinations
address specific known events that have occurred (robbery, theft, rape, murder). Each of these
PDD categories has a number of different test formats; most are versions of the Control Question
Test (CQT). The formats differ by the number, type, and order of questions asked, and in the
way the pre-test is conducted. We are concerned with two CQT formats: the Zone Comparison
Test (ZCT), and the Multiple General Question Test (MGQT). Each of these may have variations
depending on the agency that conducts the examination and examiner’s training. According to
the Department of Defense Polygraph Institute (DoDPI), the ZCT usually has the same number of
control(C) and relevant(R) questions. A typical sequence is CRCRCR, allowing for comparison of
the nearest relevant and control questions on all three charts. The MGQT has more relevant than
control questions. A proposed sequence is RRCRRC, but this is not always the case in practice.
These sequences may be interspersed with irrelevant(I) questions. The first two charts usually have
the same question order. The third chart looks more like the ZCT format. Both ZCT and MGQT
may have other “wild-type” questions introduced during the exam [7]. The order of questions may
or may not be randomized across different charts. All these elements add variability to the data.
An example set of questions for ZCT and MGQT formats is in Table A1 of the Appendix.

Screening tests address events that may have occurred (espionage, sabotage, disclosure of clas-
sified information). The most commonly used is the Test of Espionage and Sabotage (TES) which
asks all individuals the same type of questions in the same order on two charts. An example of
TES questions is presented in Table A2.

2.3 Instrumentation and Measurements

A polygraph instrument records and filters the original analog signal. The output is a digital signal,
a discretized time series with possibly varying sampling rates across instruments and channels. The
polygraph typically records thoracic and abdominal respirations, electrodermal and cardiovascular
signals (Figure 1).

Pneumographs positioned around the chest and the abdomen measure the rate and depth
of respiration. Subjects can control their breathing and influence the recorded measurements.
Changes in respiration can also affect heart rate and electrodermal activity. For example coughing
is manifested in electrodermal activity.

Electrodermal activity (EDR) or sweating is measured via electrodes (metal plates) placed
on two fingers, and it is considered the most valuable measure in lie detection. When a small
current is passed through the skin, skin conductance (SC) or its reciprocal, skin resistance (SR)is
recorded. The autonomic nervous system in a stressful situation typically increases secretion of the
eccrine glands, and thus lowers the resistance. When SC is measured, the readouts can be directly
interpreted as the person’s reactions to the questions. When SR is measured, however, there needs
to be an adjustment with respect to the basal level in order to assess the EDR activity. Some have
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argued that the size of the response to a question depends on which of SC or SR is recorded [9].
This is a controversial issue discussed in more detail in the psychophysiological literature and in
[7].
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Figure 1: The figure on the left is the raw data from a deceptive person on chart 1. The lower
two recordings are thoracic and abdominal respiration, the middle time series is cardiovascular
signal and the upper is electrodermal signal. The scale is arbitrary. The labels on the upper
axis correspond to a question sequence. The figures on the right represent data on the second
and third chart of the same person. The cardiovascular signal is split into relative blood
volume and pulse frequency signals as described in Section 5.1.

Cardiovascular activity is measured by a blood pressure cuff positioned above the biceps. As a
hybrid signal of relative blood pressure and heart rate, it is the most complex of the four recorded
measurements. The cardiovascular response is either coactivated or coinhibited by other physio-
logical responses, making its evaluation more difficult, e.g. [0.12Hz-0.4Hz] frequency band in the
heart rate is due to respiration. This coupling may differ within a person and across different
environmental settings [5].

It is unclear whether these physiological responses reflect a single psychological process (such as
arousal) or the extent to which they are consistent across individuals. The psychophysiological lit-
erature includes contradictory claims on how internal emotional states are mapped to physiological
states, and the extent to which emotional states represent deception [7, 12, 16, 19].

2.4 Chart Evaluations

A critical part of polygraph examination is the analysis and interpretation of the physiological data
recorded on polygraph charts. Polygraph examiners rely on their subjective global evaluation of
the charts, numerical methods and/or computerized algorithms for chart scoring.

2.4.1 Numerical Scoring

The scoring procedure may differ by the PDD examination type, policy of the agency, and the
examiner’s training and experience. The 7-Position Numerical Analysis Scale scoring relies on spot
analysis where each relevant question has a location (“spot”). The examiner looks for changes in the
baseline, amplitude, duration, and frequency of the recorded signals at each spot and compares them
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to the activities at the nearest control question (often the strongest control is chosen). Values on a
7-point scale (-3 to 3) are assigned to the differential of the two responses. The overall score for each
spot is calculated by summing the assigned values across charts for each channel (two respiratory
tracings are added together). The grand total is the sum of all spot totals. The negative values
indicate higher reaction on the relevant questions and the positive values indicate higher response
on the control questions. A grand total score of +6 and greater indicates nondeception, -6 and less
deception, and anything in between is considered an inconclusive result. These cutoffs may vary
[23, 28].

2.4.2 Computerized Scoring Algorithms

Two computerized polygraph systems are currently used in connection with U.S. distributed poly-
graph equipment, but other systems have been developed more recently. The Stoelting polygraph
instrument uses the Computerized Polygraph System (CPS) developed by Scientific Assessment
Technologies based on research conducted at the psychology laboratory at the University of Utah
[21, 22, 6]. The Axciton and Lafayette instruments use the PolyScore algorithms developed at the
Johns Hopkins University Applied Physics Laboratory [13, 14, 25]. Three new polygraph scoring
algorithms are introduced for use with the Axciton polygraph instrument: AXCON and Chart
Analysis by Axciton Systems, Inc. and Identifi by Olympia. Performance of these algorithms on an
independent set of 97 selected confirmed criminal cases was compared by [10](see Table A3). CPS
performed equally well on detection of both innocent and guilty subjects while the other algorithms
were better at detecting deceptives. Unfortunately, the method of selecting these cases makes it
difficult to interpret the reported rates of misclassification. More details on the actual polygraph
instruments and hardware issues and some of the history of the development of computerized
algorithms can be found in [1, 23, 22].

The description here focuses on the PolyScore and CPS scoring algorithms since no information
is publicly available on statistical methods utilized by these more recently developed algorithms.
The methods used to develop the two computer-based scoring algorithms both fit within the general
statistical framework as described below. They take the digitized polygraph signals and output
estimated probabilities of deception. While PolyScore uses logistic regression or neural networks
to estimate the probability of deception from an examination, CPS uses standard discriminant
analysis and a naive Bayesian probability calculation to estimate the probability of deception (a
proper Bayesian calculation would be far more elaborate and might produce markedly different
results). They both assume equal a priori probabilities of being truthful and deceptive. The biggest
differences that we can discern between them are the data they use as input, their approaches to
feature development and selection, and the efforts that they have made at model validation and
assessment.

PolyScore was developed on real criminal cases. CAPS, an earlier version of CPS, was developed
on mock crimes, while the more recent versions rely on actual criminal cases. CAPS ground truth
came from independent blind evaluations, while PolyScore relied on a mix of blind evaluations and
confessions. Both algorithms do some initial data transformation of the raw signals. PolyScore
uses more initial data editing tools such as detrending, filtering and baselining, while CPS tries
to retain much of the raw signal. They both standardize signals, although using different proce-
dures. They extract different features, and they seem to use different criteria to find where the
maximal amounts of discriminatory information lies. Both, however, give the most weight to the
electrodermal channel.

PolyScore combines all three charts into one single examination record and considers reactivities
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across all possible pairs of control and relevant questions. CAPS compares adjacent control and
relevant questions as is done in manual scoring, but it also uses the difference of averaged stan-
dardized responses on the control and relevant questions to discriminate between deceptive and
non-deceptive people. CPS does not have an automatic procedure for the detection of artifacts,
but it allows examiners to edit the charts themselves before the algorithm calculates the probability
of truthfulness. PolyScore has algorithms for detection and removal of artifacts and outliers, but
it claims that the specific details are proprietary and will not share them.

A more detailed review of the computerized scoring systems can be found in Appendix F of
[7]. Computerized systems have the potential to reduce bias in the reading of charts and inter-
rater variability. Whether they can actually improve accuracy also depends on how one views the
appropriateness of using other knowledge available to examiners, such as demographic information,
historical background of the subject, behavioral observations.

3 Statistical Models for Classification and Prediction

This section provides some background on the statistical models that one might naturally use
in settings such as automated polygraph scoring. The statistical methods for classification and
prediction most often involve structure:

response variable = g(predictor variables, parameters, random noise), (1)

where g is some function. For classification problems it is customary to represent the reponse
as an indicator variable, y, such that y = 1 if a subject is deceptive, and y = 0 if the subject is
not. Typically we estimate y conditional on the predictor variables, X, and the functional form, g.
For linear logistic regression models, with k predictor variables x = (x1, x2, ..., xk), we estimate the
function g in equation (1) using a linear combination of the k predictors:

score(x) = β0 + β1x1 + β2x2 + β3x3 + β4x4 + βkxk (2)

and we take the response of interest to be:

Pr(deception|x) = Pr(y|x) =
escore(x)

1 + escore(x)
. (3)

This is technically similar to choosing g = score(x), except that the random noise in equation
(1) is now associated with the probability distribution for y in equation (3), which is usually taken
to be Bernoulli. We are using an estimate of the score equation (2) as a hyperplane to separate the
observations into two groups, deceptives and nondeceptives. Model estimates do well (e.g., have
low errors of misclassification) if there is real separation between the two groups.

Model development and estimation for such prediction/classification models involve a number
of steps:

1. Specifying the list of possible predictor variables (features of the data) to be used.

2. Choosing the functional form g in model (1) and the link function.

3. Selecting the actual features from the feature space to be used for classification.

4. Fitting the model to data to estimate empirically the prediction equation to be used in
practice.

5. Validating the fitted model through some form of cross-validation.
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Different methods of fitting and specification emphasize different features of the data. The
standard linear discriminant analysis assumes that the distributions of the predictors for both the
deceptive group and the nondeceptive group are multivariate normal, with equal covariance matrices
(an assumption that can be relaxed). This gives substantial weight to observations far from the
region of concern for separating the observations into two groups. Logistic regression models, on
the other hand, make no assumptions about the distribution of the predictors. The maximum
likelihood methods typically used for their estimation put heavy emphasis on observations close to
the boundary between the two sets of observations. Common experience with empirical logistic
regression and other prediction models is that with a large number of predictor variables we can
fit a model to the data (using steps 1 through 4) that completely separates the two groups of
observations. However, once we implement step 5 we often learn that the achieved separation is
illusory. Thus many empirical approaches build cross-validation directly into the fitting process,
and set aside a separate part of the data for final testing.

Hastie et al.[17] is a good source of classification/prediction models, cross-validation, and related
statistical methodologies. Algorithmic approachs to prediction from the data-mining focus less on
the specification of formal models and treat the function g in equation (1) more as a black box that
produces predictions. Among the tools used to specify the black box are regression and classification
trees, neural networks, and support vector machines. These still involve finding separators for the
observations, and no matter which method one chooses to use, all five of the steps listed above still
require considerable care.

4 The Data

The Department of Defense Polygraph Institute (DoDPI) provided data from 170 specific incident
cases that vary by the collection agency, type of crime, test formats and questions. In this report
we analyzed 149 cases1, a mix of ZCT and MGQT test formats (see Table 1). We had to discard
21 cases due to missing information on one or more charts. The type of data missing could be any
combination of type of questions, onset of the questions, time of the answer and others. All data
were collected with Axciton polygraph instruments.

Deceptive NonDeceptive Total
ZCT 27 24 51 (51)

MGQT 90 29 119 (98)
Total 117 (98) 53 (51) 170 (149)

Table 1: Number of specific incident cases by test type and ground truth. Numbers in
parenthesis are the numbers of cases used in our analysis.

Each examination (subject/case) had three to five text data files corresponding to the exam
charts, each approximately five minutes long. The data were converted to text from their native
proprietary format by the “Reformat” developed by JHUAPL, and the identifiers were removed.
Each data file contained the sequence of questions asked during the exam, and the following fields:

1. Sample: index of observations; sampling rate is 60Hz for all measurements.
2. Time: the time, relative to the test beginning, when the sample was taken
3. Pn1: recording of the thorax respiration sensor.
4. Pn2: recording of the abdomen sensor.
1These data overlap with those used in the development of PolyScore
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5. Edr: data from an electrodermal sensor.
6. Cardio: data from the blood pressure cuff (60 and 70 mmHg inflated).
7. Event: markings for the length of asking of the question and time of the answers.

Figure 1 shows raw data for one subject. Each time series is one of the four biological signals plus
unknown error. In our analyses we use an additional series (pulse frequency that we extracted from
the cardiovascular signal; see Section 5.1). Demographic data such as gender, age, and education
are typically available to the examiner during the pre-test phase. We had limited demographic data
and did not utilize it in the current analysis.

Respiratory tracing consists of inhalation and exhalation strokes. In manual scoring the exam-
iner looks for visual changes in the tracings for breathing rate, baseline and amplitude, where for
example 0.75 inches is the desired amplitude of respiratory activity. Upper and lower respiration
recordings are highly correlated as are the features we extract on these recordings.

EDR

Cardio

Upper
Resp

Lower
Resp

Figure 2: Approximately 40 seconds of data from a guilty person spanning a control and a
relevant question. The responsiveness on these two questions is compared. The vertical solid
line marks a question onset, the dashed line is the end of the question and dotted line is the
answer time.

Electrodermal (EDR) tracing is the most prominent signal. Based on the limited information
about the Axciton instrument, our EDR signal is a hybrid of the skin conductance and skin resis-
tance [10] and little of known psychophysiological research can be applied. In manual scoring an
evaluator may look for changes in amplitude and duration of response. When there is no reactivity
the tracing is almost a horizontal line. Notice in Figure 2 the deceptive person has a higher response
after the relevant question than after the control question. Psychophysiology literature reports a
1-3 seconds delay in response to a stimulus. We observe EDR latency of about 1-6 seconds from
the question onset.
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Research has shown that stronger stimulation elicits larger EDR response, but repetitive stim-
ulation leads to habituation [9]. In Figure 3 notice the decrease in the response on the first relevant
question across three charts. This could be a sign of habituation where a response to a stimulus is
reduced with repeated exposure to the same question. However, in a number of cases the sequence
of the questions may not be the same across the charts so we might be observing different respon-
siveness to semantically different questions and not habituation. For example, the first relevant
question on chart 1 may appear in the third postion on chart 3. In addition, different people have
different responsiveness to the same stimulus. It’s been found that the skin conductance response
(SCR) is correlated with other measures. For example, increase in SCR is associated with increase
in blood pressure and heart rate.

Cardiovascular tracing records systolic stroke (pen up), diastolic stroke (pen down) and the
dichotic notch. The evaluator looks for changes in baseline, amplitude, rate and changes in dichotic
notch (position, disappearance). For cardiovascular activity the blood pressure usually ranges from
80mmHg to 120mmHg [5], but we cannot utilize this knowledge since the scale of our tracings is
arbitrary with respect to known physiological measurment units. In fight-or-flight situations, heart
rate and blood pressure typically both increase.
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Figure 3: The figure on the left shows overlaid response windows for electrodermal, blood
volume and pulse frequency series on charts 1, 2 and 3 of a deceptive person for the first
relevant-control question pair. The figure on the right shows the same series on chart 1 of a
deceptive and non-deceptive persons for a relevant-control question pair.

Besides habituation there are other issues manifested in these data that may influence feature
extraction, evaluation and modeling. Latency differences are present across different question pairs
within the same chart and for the same person. In Figure 5, for example, notice how the latency
changes for the EDR as we move from the first relevant-control pair to the third. We can also
observe different responsiveness (e.g., magnitude) across different questions. This phenomenon,
however, may actually be due to a body’s tendency to return to homeostasis and not due to a
different reaction to different stimuli.

Our analysis revealed diverse test structures even within the same test format. The ZCT usually
has the same number of control (C) and relevant (R) questions. A typical sequence is CRCRCR. The
MGQT proposed sequence is RRCRRC. These sequences may be interspersed with other question
types, and in our data we found at least 15 different sequences. The questions varied greatly across
tests and were semantically different among subjects within the same crime. The order of questions
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varied across charts for the same person. Two problems we faced were the variable number of charts
and variable number of relevant questions. Missing relevant questions should be treated as missing
data; however, in this project we did not have sufficient evidence to properly impute these values.
Thus we chose to drop the fourth relevant-control pair when it existed. For eight subjects who were
missing the third relevant-control pair, we replaced their value by zero, i.e., we assumed that there
was no difference in the response on that particular relevant-control pair. Elimination of both the
fourth chart and the fourth relevant-control pair when missing, and replacement of missing values
with zeros did not significantly change the model coefficients nor the final result of classification.
These types of differences across cases pose major problems for both within- and between-subject
analyses, unless all the responses are averaged.

The crucial information for the development of a statistical classifier of polygraph data is ground
truth (i.e., knowledge of whether a subject was truly deceptive or nondeceptive). Ideally, deter-
mination of ground truth should be independent of the observed polygraph data, although it is
not clear how the ground truth was established for some of our cases. This introduces uncertainty
in class labels, in particular for innocent cases since their ground truth is typically set based on
somone else’s confession. We proceed as though the ground truth in our data is correct.

5 Statistical Analysis

We follow the general framework described in Section 3 for for development and estimation of the
logistic regression classification model. The analysis can be broken into Signal Processing, Feature
Extraction, Feature Evaluation, Modeling and Classification, and Cross-Validation.

5.1 Signal Processing

With modern digital polygraphs and computerized systems, the analog signals are digitized and
the raw digitized electrodermal, cardiovascular and respiratory signals are used in the algorithm
development. The primary objective of signal processing is to reduce the noise-to-information
ratio. This traditionally involves editing the data (e.g., to detect artifacts and outliers), some
signal transformation, and standardization. Our goal is to do a minimal amount of data editing
and preserve the raw signal since we lack information on actual instrumentation and any type of
filtering performed by either the machine or the examiner.

We first subsampled the 60Hz data by taking every fifth observation for each channel. Next we
transformed the cardiovascular recording. We separated the relative blood volume from the pulse,
constructing a new series for the relative blood pressure and another one for the pulse frequency.
This was done by first calculating the average signal by applying a moving average with a window
of size five. This gives a crude measurement of relative blood pressure. The averaged signal was
subtracted from the original signal to produce the pulse. The pulse frequency time series is obtained
by first removing ultra-high frequency by applying a low pass filter2. The filtered signal is made
stationary by subtracting its mean. For each window of size 199 observations, we computed the
spectral density of a fitted sixth order auto-regressive model3. Via linear interpolation we calculated
the most prominent frequency. The procedure was repeated for the length of the time series to
obtain a new series representing the frequency of a person’s pulse during the exam (see Figure 4).

2We used the Matlab built-in Butterworth filter of the 9th order at frequency 0.8.
3We explored different AR models as well, but AR(6) seems to capture the changes sufficiently.
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Artifact ?

Baseline response?

Figure 4: Signal transformation of cardiovascular signal.

5.2 A Simplified Approach to Feature Extraction

The discussion of general statistical methodology for prediction and classification in Section 3
emphasized the importance of feature development and selection. A feature can be anything we
measure or compute that represents the emotional signal. Our goal was to reduce the time-series
to a small set of features with some relevance in modeling and classifying deception.

Our initial analysis tried to capture low and high frequency changes of the given measurements.
To capture slow changes we extracted integraded differences and latency differences features within
a 20-second window from the question onset. Within the same response interval, we extracted
spectral properties differences to capture high frequency changes. These three features are crude
measures of differential activity on relevant and control questions. We used the same features for
all signals except for the respiration, where we did not use the latency.

Integrated Differences. The integrated difference is the area between two curves.

dijkl =
n∑

l=1

Rijkl − Cijkl, (4)

is the integrated difference of the ith relevant question versus the ith control question of the jth

channel on the kth chart, where n = 240 is the number of observations in the response window (see
Figure 5).

Latency Differences. We calculated latency for each 20-second window for control and rele-
vant questions on all channels except respiration as follows:

1. Take the absolute value of the differenced time series, Yt = | 4 Xt|.
2. Calculate the cumulative sum, Yj =

∑j
k=0 Xk, and normalize it, i.e., Zj = Yj

Yn
.

3. Define latency as the minimum Zj such that Zj > 0.02, i.e., ` = min{Zj : Zj ≥ 0.02}.
4. Define the latency difference feature as the difference in the latency at the relevant and the control

questions: `rc = `r − `c.
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Figure 5: The figure on the left are the overlaid response windows for electrodermal, blood
volume, and pulse frequency series on chart 1 of a deceptive person for a relevant-control
question pair. The figure on the right shows the same series on chart 1 of a deceptive person
for 3 pairs of relevant and control questions.

Spectral Properties Differences. High frequency measure is the difference between spectral
properties that we defined in the following way:

1. Apply a high pass filter4 on a 20-second window for each control and relevant question.

2. Generate periodograms as an estimator measure of spectrum.

3. Assess the spectral properties difference:

(a) Calculate a mean frequency component, fc =
∫ π

0
λSc(λ) dλ, where λ is the spectral density of

the process, and Sc is the estimated measure of the spectrum.

(b) Calculate the variance of the frequency component, vc =
∫ π

0
λ2Sc(λ) dλ − f2

c .

(c) Combine (a) and (b) to get hrc = |fr − fc| +
∣∣√vr −√

vc

∣∣.
These extracted features are measures of responsiveness to the stimuli. For integrated differences

and latency differences measures we expect positive values if the response is higher on the relevant
question, negative if it’s higher on the control questions and zero if there is no difference. Spectral
proportion differences only give the magnitude of the differential activity.

5.3 Feature evaluation, modeling, and classification

This section reviews aspects of feature selection and of statistical modeling involving the develop-
ment of scoring rules into classification rules. The extracted features were considered in three types
of comparisons between relevant and control questions:

1. each relevant compared to its nearest control,
2. each relevant compared to the average control,
3. averaged relevant compared to the average control.
4We used built-in Butterworth filter from Matlab.
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In the first two settings the maximum number of continuous variables per subject was 240
(4 relevant-control pairs × 5 channels × 4 charts × 3 features), while the third setting had 60.
Since the potential variable space is large relative to the sample size, and since the variables
are highly correlated, particularly in the first two settings, we evaluated them graphically, via
clustering, principal-component analysis (PCA) and with univariate logistic regression trying to
reduce dimnesionality. The remainder of this report will focus on third setting. The other two
settings are briefly discussed in Technical Appendix.

Figure 6 shows separation of the two classes given the integrated differences feature for the
electrodermal (dEdr) channel or the electrodermal latency differences (lEdr) versus the integrated
differences for blood volume (dBv). These are values averaged across charts. Most deceptive
subjects (the 1s in the figure) have values greater than zero on dEdr and their distribution is
slightly skewed left on pulse frequency (Fqp). Nondeceptive subjects (represented with 0s) mostly
have values less than zero on dEdr. They are less variable on Fqp and are centered around zero.
Most deceptive subjects have a positive latency differences measure; their latency is longer on
relevant than on the control questions (when averaged within and across charts). Nondeceptives
show a tendency of having less variable values that are less than zero (i.e., longer latency on EDR
on control questions, but not as much between variability as for deceptive subjects). A bivariate
plot of the integrated differences for blood volume and pulse frequency shows less clear separation
of the two groups. Deceptive subjects show a tendency to have higher blood volume responses on
relevant than on control questions while the opposite holds for nondeceptive examinees.
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Figure 6: Bivariate plots for some of the averaged features of different channels/signals.
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5.4 Logistic Regression

We used data from 97 randomly chosen subjects (69 deceptive and 28 nondeceptive) for evaluation
and selection of the best subset of features for the logistic regression classification model. The
remaining 52 cases (29 deceptive and 23 nondeceptive) were used for testing. Since the questions
across subjects are semantically different and there is no consistent ordering, we developed a model
based on comparison of the averaged relevant questions versus the averaged control questions.
Logistic regression models developed on variables from the first two settings even when principal
components are used as predictors yield multiple models with 8 to 10 predictors. These predictors
vary across different models and perform poorly on the test set, although they may achieve perfect
separation on the training dataset(see Technical Appendix for brief results).

Average Relevant vs. Average Control. For each chart, each channel and each feature we
calculated the average relevant and average control response over the 20-second window. Typically,
if we have a noisy signal, one simple solution is to average across trials (in our case across charts)
even though we lose some information on measurement variability between different charts.

R̄ij. =
∑nri

k=1
Rijk

nri
is the averaged relevant response and C̄ij. =

∑nci
k=1

Cijk

nci
is the averaged control

response on the ith chart, jth channel, where nri is the number of relevant questions and nci is the
number of control questions on the ith chart. We calculate the averaged relevant (R̄.j.) and control
(C̄.j.) responses across m charts producing a total of 13 predictors: 5 for integrated differences, 5
for spectral proportion differences and 3 for latency differences.

The logistic regression was performed for each feature independently on each chart, across the
charts and then in combination to evaluate the statistical significance of the features. A stepwise
procedure in Splus software was used to find the optimal set of features. Neither clustering nor PCA
improved the results. The following models are representative of performed analyses on each feature
and when combined: Integrated Differences (M1), Latency Differences (M2), Spectral Properties
Differences (M3), and All 3 features (M4).

Model M1 M2 M3 M4
Features β̂ (SE) β̂ (SE) β̂ (SE) β̂ (SE)
Intercept×10 +4.90 (3.03) +6.80 (2.50) +5.46(3.18) −3.07 (2.96)
Integrated Diff. Electrodermal×104 +3.15 (1.02) +1.59 (0.62)
Integrated Diff. Blood Volume×104 +2.14 (0.75) +1.07 (0.44)
Integrated Diff. Pulse Frequency×10 −3.72 (1.44) −2.49 (0.87)
Latency Diff. Electrodermal×10 +1.43 (0.404) +0.35 (0.38)
Spectral Diff. Blood Volume×102 +6.78(3.48) +3.64 (2.32)
Spectral Diff. Respiration×10 +1.43(2.33)
Spectral Diff. Pulse Frequency −261.48(364.48)

Table 2: Features with the estimated logistic regression coefficients and standard errors for
models M1, M2 and M4. A positive sign for a weight indicates an increase in deception, while
a negative sign denotes decrease. The absolute value of a weight suggests something about
the strenght of the linear association with deception.

We considered models on individual charts and observed almost identical models across charts.
Chart 3 did worse on cross-validation than the other two charts, and relied more on high frequency
measures of respiration and sweating. Chart 2 added to the detection of innocent subjects in
comparison to chart 1. For chart 2 the latency differences on blood volume was a slightly better
predictor than the high frequency measure which is more significant on chart 1. Table A7 in the
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Appendix gives estimated coefficients and their standard erros for the models that following models
that performed the best on each chart:

Chart1 - M5: Score = β̂0 + β̂1dEdr + β̂2dBv + β̂3dFqp + β̂4hPn2 + β̂5hBv + β̂6lEdr, (5)

Chart2 - M6: Score = β̂0 + β̂1dEdr + β̂2dBv + β̂3dFqp + β̂4lEdr + β̂5lBv, (6)

Chart3 - M7: Score = β̂0 + β̂1dEdr + β̂2dBv + β̂3hPn2 + β̂4hEdr + β̂5lEdr. (7)

The linear combination of integrated differences was the strongest discriminator. Latency had
the most power on the electrodermal response. Our high frequency feature on any of the mea-
surements was a poor individual predictor, particularly on nondeceptive people, however it seems
to have some effect when combined with the other two features. All features show better dis-
crimination on electrodermal response, blood volume and pulse frequency than on the respiration
measurements.

5.5 Classification Results

We tested the previously described models for their predictive power on an independent test set of
52 subjects. This is known as hold-out-set cross validation. Table 3 summarizes the classification
results based on a 0.5 probability cutoff. A probability of 0.5 or above indicates deception, and a
probability less than 0.5 indicates truthfulness.

Model Training Test
Deceptive(%) Nondeceptive(%) Deceptive(%) Nondeceptive(%)

M1 94 64 97 52
M2 96 29 90 9
M3 99 7 100 4
M4 93 61 97 48
M5 92 50 83 38
M6 88 43 87 52
M7 92 57 83 22

Table 3: Percents of correctly classified subjects from hold-out-set cross validation.

We ran the same subsets of training and test data through the Polyscore. Figure 6 shows
receiver operating characteristic curves (ROCs) of model M4 performance and of PolyScore 5.1 on
52 test cases. This is not an independent evaluation of PolyScore algorithm since some of these
cases were used in its development. ROC and area under the curve give quantitative assessments
of a classifier’s degree of accuracy. It was shown by [8] that ROC overestimates the performance of
the logistic regression classifier when the same data are used to fit the score and to calculate the
ROC.

Training (N=119) Test(N=30)
Deceptive% Nondeceptive% Deceptive% Nondeceptive%
M1 M4 M1 M4 M1 M4 M1 M4

Mean 91 90 60 57 92 92 70 66
St.Error 4.1 2.1 2.3 2.1 5.4 5.6 21.6 21.5

Table 4: Percent of correctly classified individuals in k-fold cross validation at 0.5 cutoff value.
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Empirical ROC - 52 Test Cases
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Deceptive 90% 86% 73-100%
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Figure 7: ROCs for classification results of PolyScore 5.1 and M4 on 52 test cases.The table
shows percent correct when 0.5 is considerd as a cutoff value. In practice PolyScore 5.1
uses 0.95 and 0.05 as the cutoff values for classifiying deceptive and nondeceptive subjects
(everything inbetween is considered inconclusive). (*)These values are based on different
cutoff values and range over the percent correct when inconclusives are included and excluded
giving higher percent correct when incoclusive cases are excluded.

Since k-fold cross-validation works better for small data sets [17] we performed 5-fold cross-
validation on models M1 and M4. The results are presented in Table 4. The number of innocent
subjects in training runs from 30 to 47 out of 51, and deceptive from 72 to 80 out of 98 (see Table
A6). We belive that 100% correct classification in the first run, which is highly inconsistent with
the other runs, was due to the small number of nondeceptive test cases in that run. The average
area under the ROC for M4 is 0.899(±0.05). When we apply shrinkage correction proposed by [8]
the average area under the curve is approximately 0.851.

6 Discussion

The objective of the automated scoring algorithms for polygraph data is to create reliable and
statistically valid classification schemes minimizing both false positive and false negative rates.
Beginning in the 1970s, various papers in the polygraph literature offered evidence claiming to
show that automated classification methods and algorithms for analyzing polygraph charts could
do so. According to [10] the accuracies of five different computer algorithms range from 73% to 89%
on deceptive subjects when inconclusives are included and 91% to 98% when they are excluded.
For innocent subjects these numbers vary from 53% to 68%, and 72% to 90%.

Our analyses based on a set of 149 criminal cases provided by DoDPI suggests that it is easy
to develop such algorithms with comparable recognition rates. Our results are based on a 0.5
probability cutoff for two groups: deceptive (probability greater than 0.5) and nondeceptive (prob-
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ability less than 0.5). Other cutoff values would allow us to balance the errors differently. Neither
clustering nor PCA significantly improve our results, which is consistent with the recent work of
[6].

One possible explanation for the relatively poor classification preformance is the small sample
size and, in particular, the small number of nondeceptive cases. However, PolyScore algorithms, for
example, had a much larger database [25] but thier accuracy rates are not significantly better than
ours. Since a stepwise procedure for selecting the variables relies predominantly on the random
variability of the training data, we expect to get models more specific to the training sample which
do not necessarily generalize well to the test sample.

Another possible explanation could be high variability and presence of measurment errors that
come with real-life polygraph data, where there is a lack of standards in data collection and record-
ing. Our exploratory data analysis points to problems with question inconsistency, response vari-
ability within an individual and across individuals (due to nature, gender, etc.), and possible
learning effects. It is not always clear where differences in responses come from; are we dealing
with habituation or comparing semantically different questions across the charts and hence having
different responsivness to different questions? Since in our data questions are semantically different,
and no consistent ordering within and across charts could be established, we averaged the relevant
and control responses and then look at their difference. PolyScore and CPS algorithms take the
same approach. This methodology ignores the question semantics which could be a flaw in this
approach. These phenomena could be better studied in the screening type tests or with more stan-
dardized laboratory cases5 where there is consistency in the order and the type of questions asked
within and across both charts and individuals. Although CPS algorithms have been developed on
laboratory data, they have not achieved significantly better results.

Each step of the analysis outlined in Section 5 has numerous issues worth further exploration
and deliberation. Below we discuss a selected few.

Signal processing. In the signal processing stage we extract blood volume and pulse from
the cardiovascular recording. While other algorithms have performed similar transformations, we
are not aware that they produce pulse frequency and use it as an additional measurement which in
our analyses significantly aids in classification. Cardiovascular signal could be further purified by
removing a frequency band due to respiration from 0.12Hz to 0.4Hz. At this time we are not sure
if this would improve the results.

Dawson et al. [9] point out the large variability across individuals in their EDR responsiveness.
They recommend standardizing EDR data. The recommendations, however, differ for skin conduc-
tance response and skin conductance level (SCL). Some of the elements needed for the proposed
standardization are not easily identified in our data. The minimum SCL should be calculated from
the rest period and the maximum during some stronger activity. What could we consider a rest
period: an irrelevant question for either deceptive or non-deceptive? Which irrelevant would it be:
the first or any other? The two algorithms address different levels of responsiveness across different
people by standardizing the features. The standardization is slightly problematic because of all
these issues. Second, the standardization is typically done within the response window only and
not on the complete waveform.

Psychophysiological literature suggests that artifacts, outliers and other signal noise should be
removed. However, it is not always clear if something is an artifact or actual reaction to a stimulus
as depicted in Figure 4. In this work we did not perform artifact detection and removal. More on
this important topic related to automated scoring of polygraph data may be found in [22, 13, 7].

Feature extraction. An important part of feature extraction is defining an event (response
5See discussion on possible downfalls of lab data in [7].
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interval) that captures information on deception. It is not trivial to determine where the reaction
begins and ends with respect to the signal and the feature. The analyses presented in this report
rely on a 20-second window from the onset of the question. A fixed window size may not account
for the fact that different signals by their nature have different frequencies and a person is likely
to show faster or slower reactions on one channel than the others. Windows of different sizes for
different channels need to be considered. Although JHUAPL uses different window sizes, there
is a lack of scientifically recorded procedures that they used for coming up with these windows.
We consider the window only from the question onset. Psychophysiological research, for example
for the EDR, indicates that the reactions should be considered by looking a few seconds before
the onset of the question. Another issue that appears to be ignored by the current algorithms is
the possibility of anticipation and learning that may have occurred during the examination. If the
order of the questions remains the same across the three repetitions, the subject is likely, at least by
the third chart, to anticipate the upcoming question and react sooner than expected. We observed
some cases where the answers occur before the asking of the question ends. This could be a false
phenomena, and simply an error of the examiner in recording the time of the answer.

Feature evaluation and selection. Discussion of general statistical methodology for pre-
diction and classification at the beginning of this report emphasized the importance of feature
development and selection. With three relatively crude and simple features we tried to capture
both low frequency (integrated difference features, and latency difference features) and high fre-
quency (spectral properties difference) changes in the physiological recordings during the exam.
The general psychophysiological literature suggests a larger array of possible features such as skin
conductance level or half-recovery time [9]. Since we have some hybrid of skin conductance and
skin resistance, it is questionable if and how any of suggested features apply on our data. Simi-
larly, cardiovascular activity is typically analyzed using heart rate and its derivatives such as the
heart rate variability or the difference of the maximum and minimum amplitudes. Brownley et
al.[5], however, state that reliability of heart rate variability as a measure is controversial and they
suggest the use of respiratory sinus arrhythmia (RSA), which represents the covariance between
the respiratory and heart rate activity. This implies a need for the frequency-domain analysis in
addition to the time-domain analysis of the biological signals. Harver et al. [16] suggest looking at
the respiratory rate and breathing amplitude as possible features describing respiratory responses.
They also point out that recording changes only of upper or lower respirations is not adequate to
estimate relative breathing amplitude.

In general, area measures (integrated activity over time) are less susceptible to high-frequency
noise than the peak measures, but the amplitude measurements are more reliable than the latency
[12]. Early research focusing specifically on the detection of deception suggested that the area under
the curve and amplitudes of both skin conductance and cardiovascular response can discriminate
between the deceptive and truthful subjects. Other features investigated included duration of rise
to peak amplitude, recovery of the baseline and the overall duration of the response. [21] report
that line-length, the sum of absolute differences between adjacent sample points, which captures
some combination of rate and amplitude is a good measure of respiration suppression. Our analyses
indicate that integrated differences have strong classification power on all of the channels but the
least on the respiration. Similar inference can be made for the latency difference measure, which is
less significant than the area measure.

Computerized analysis of digitized signal offers a much larger pool of features, some of them not
easily observable by visual inspection, but large pool of features raises problems in feature selection.
Polyscore for example has considered on the order of 10,000 possible features. The statistical and
data-mining literatures are rife with descriptions of stepwise and other feature selection procedures,
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but the multiplicity of models to be considered grows as one considers transformations of features
and interactions among features. All of these aspects are intertwined and thus the methodological
literature fails to provide a simple and unique way to achieve the empirical objectives of identifying
a subset of features in the context of a specific scoring model that has good behavior when used
on a new data set. When the number of features is larger, the exhaustive approach is clearly
not feasible. If one has a small training set of test data (repeatedly uses the same test data) one
may obtain features that are well suited for that particular training or test data, but that are not
the best features set in general. What most statisticians argue is that fewer relevant variables
do better on cross-validation, but even this claim comes under challenge by those who argue for
model-free, black-box approaches to prediction models (e.g., see [4]). In our analyses the most
consistent model has only 3 variables and it is easily interpretable. PolyScore 3.2 ultimately ended
up using 10 features for logistic regression: 3 describing GSR, 3 for blood volume, 2 for pulse and
2 describing respiration but the authors do not disclose precisely which features these are [25].
PolyScore version 5.1, based on a neural network, purports to use 22 features. The most recent
version of the CPS algorithm, uses only 3 features: SC amplitude, the amplitude of increases in
the baseline of the cardiograph and a line-length composite measure of thoracic and abdominal
respiration excursion [21]. In the present setting, the number of cases used to develop and test
models for the algorithms under review was sufficiently small that the seeming advantages of these
data-mining approaches are difficult to realize.

Classification. Logistic regression applies maximum likelihood estimation to the logit trans-
form of the dependent variable. Since it estimates log odds of a person being deceptive, it actually
gives us a probably of deception. Logistic regression is relatively robust since it doesn’t assume
linearity between covariates and the response, covariates do not need to be normally distributed,
and it doesn’t assume homoscedasticity of the response, and does not need normally distributed
errors. Currently we assign equal weights to all of our covariates. It is possible that the different
features and or signals should have more weight. One main difference between manual and auto-
matic scoring is that the manual scoring equally weights all three channels, while the automated
scoring more heavily weights the electrodermal response. JHUAPL algorithms assign different
weights to features associated with different signals. From anecdotal experience it has been noted
that the electrodermal (EDR) output is more easily scored than the other channels and that exam-
iners heavily rely on EDR signal. It also appears that respiratory recording bears the least weight,
although some recent results point otherwise [6]. In our analyses, we also observed that features
on EDR have the most classification power whereas the ones on respiration have the least.

The models, as expected, generalize poorly to the test set. We observe the increase in lack of
fit as we move from the averaged models to pairwise model. This might be due to the fact that we
do not account for the ordering of the questions; neither manual or other automatic scorings do. It
also appears that we need more predictors to describe the deceptive and non-deceptive classes as we
move from the averaged to pairwise models. When based on a large number of classifying variables
we appear to achieve perfect separation of deceptive and nondeceptive individuals on training data
but perform poorly on the test set. Statisticians have recognized the problem with such “overfit-
ting” of the data, and shown that the performance of these classifiers often deteriorates badly under
proper cross-validation assessment (see [17], for a general discussion of feature selection and the
discussion that follows for specifics in the polygraph setting). These “complex” algorithms often
turn out to be less effective on a new set of cases than those based on a small set of simple features.

All the above discussed issues point to difficulty of capturing all the variability and the lack
of structure in the specific incident polygraphs, and in producing a generalizable model. Perhaps
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it is not reasonable to expect that a single algorithm will successfully be able to detect guilty
and innocent examinees. The solution may lay in the data collection and on detailed research on
underlying theory for polygraphs, before proper statistical modeling can be effectively utilized. On
the other hand polygraph testing in a screening setting is more structured for an individual and
across individuals. TES asks the same questions on two charts in the same order for all subjects.
From our analyses it could be reasonable to expect that a generalizable model can be developed for
screening purposes. Of course having a generalizable model does not mean that we will have either
validity or accuracy. However, the issue here is if we are going to have strong enough differential
responsiveness since the questions are less specific.

Finally, in the cases we examined there is little or no information available to control for selection
bias, assesment of ground truth, differences among examiners, examiner-examinee interactions, and
delays in the timing of questions. Most of these are not addressed by current scoring algorithms.
More discussion on these issues and inflated accuracies can be found in Appendix F of [7]. Further
if we are to extend this results to screening data, we need to be cautious since we might be dealing
with two completely different populations (i.e. common thief, vs. trained secret agents). Some of
these problems can be overcome by careful systematic collection of polygraph field data, especially
in a screening setting, and others cannot. Controlling for all possible dimensions of variation in a
computer-scoring algorithm, however, is a daunting task unless one has a large database of cases.

7 Conclusion

This report presents an initial evaluation and analysis of polygraph data for a set of real-life specific
incident cases. With a very simple approach we have managed to obtain accuracy rates comparable
to what’s currently being reported by other algorithms and manual scoring. The fact that we are
able to produce a number of different models that account for different predictors yet give similar
results, points to the complexity that underlines assessment and/or classification of examinee’s
deceptiveness.

This work can be redefined and extended in a number of ways. More features could be extracted
and explored. Thus far these efforts have not resulted in significantly smaller errors, hence it raises a
question how far could this approach go beside what’s already has been reported. One could imagine
improvements to current methods by running a proper Bayesian analysis and incorporating prior
knowledge on prevalence. Our inclination would be to do a more complex time series analysis of
these data. The waveform of each channel can be considered and the analysis would gear towards
describing a physiological signature for deceptive and nondeceptive classes. Clearly the ordering
of the questions should be accounted for. A mixed-effects model with repeated measures would be
another approach, where repetitions would be measurements across different charts. In other areas
with similar data researchers have explored the use of Hidden Markov Models [11].

There has yet to be a proper independent evaluation of computer scoring algorithms on a suit-
ably selected set of cases, for either specific incidents or security screening, which would allow one
to accurately assess the validity and accuracy of these algorithms. One could argue that comput-
erized algorithms should be able to analyze the data better because they use the tasks which are
more difficult even for a trained examiner to perform, including filtering, transformation, calculat-
ing signal derivatives, manipulating signals, and looking at the bigger pictures not merely adjacent
comparisons. Moreover, computer systems never get careless or tired. However, success of both
numerical and computerized systems still depends heavily on the pre-test phase of the examination.
How well examiners formulate the questions inevitably affects the quality of information recorded.
We believe that substantial improvements to current numerical scoring may be possible, but the
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ultimate potential of computerized scoring systems depends on the quality of the data available for
system development and application, and the uniformity of the examination formats with which
the systems are designed to deal.
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8 Technical Appendix

Example questions of ZCT format

X This test is about to begin.
1 Is today Wednesday?
2 Regarding that stolen property, do you intend to answer truthfully each question about that?
3 Are you convinced that I will not ask you a surprise question on this test?
4C Before 1995, did you ever steal anything from an employer?
5R Did you steal any of that missing property?
6C Before 1995, did you ever steal anything?
7R Did you steal any of that missing property from building —– ?
8 Is there something else you are afraid I will ask you a question about, even though I told you I would not?
9C Before 1995, did you ever steal something and not get caught?
10R Do you know for sure who stole any of that missing property?
XX Test is over...

Example questions of MGQT format

X This test is about to begin...
1 Is your last name ——–?
2 Is your first name ———–?
3R Did you help anyone steal any of that missing property?
4 Are you sitting down?
5R Did you steal any of those ——–?
6C Other than what you told me, before 1995, did you ever steal anything?
7 Are the light on in this room?
8R Did you steal any of those ——–?
9R Do you know for sure who stole any of that missing equipment?
10C Other than what you told me, before 1995, did you ever steal anything and not get caught?
XX This test is over.

Table A1. Example questions of ZCT and MGQT formats.

Example of TES questions on Chart 1 and Chart 2:
11 Are you now sitting down?
12 Are the lights on in this room?
SR Do you intend to answer the security questions truthfully?
1c1 Did you ever violate a traffic law?
1r1 Have you committed sabotage against the United States?
1r2 Have you ever been involved in espionage against the united states?
1c2 Did you ever lose your temper?
2r1 Have you committed sabotage against the united states?
2r2 Have you ever been involved in espionage against the united states?
2c1 Did you ever violate a traffic law?
3r1 Have you committed sabotage against the united states?
3r2 Have you ever been involved in espionage against the united states?
2c2 Did you ever lose your temper?

1I1 Are you now sitting down?
1I2 Are the lights on in this room?
SR Do you intend to answer the security questions truthfully?
1c1 Did you ever lose your temper?
1r3 Have you illegally disclosed classified information to unauthorized person?
1r4 Have you had any unauthorized foreign contacts?
1c2 Did you ever violate a traffic law?
2r3 Have you illegally disclosed classified information to unauthorized person?
2r4 Have you had any unauthorized foreign contacts?
2c1 Did you ever lose your tamper?
3r3 Have you committed sabotage against the united states?
3r4 Have you ever been involved in espionage against the united states?
2c2 Did you ever violate a traffic law?

Table A2. Example of TES question sequence. The top part are questions asked on the first chart and the
bottom are the questions asked on the second chart.
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Algorithm Deceptive (n=56) NonDeceptive(n=41)
Correct Incorrect Inconclusives Correct Incorrect Inconclusives

CPS 41 4 11 28 3 10
PolyScore 49 1 6 26 7 8
Axcon 50 1 5 24 9 8
Chart Analysis 49 2 5 22 8 11
Identifi 49 1 6 22 8 11

Table A3. Number of correct, incorrect, and inconclusive decisions by subject’s ground truth for five evalu-
ated alogorithms (see [10])

RRCRRC RRCRCR RRCRRCC RCRCRCR RCRCRCRC
CRCRC CRCRRC CRCRCR CCRCRC CRCRCRC
CRCRCCC CRCRRCR CRCRCRCC CRCRCRCR CRCRCRCRC

Table A4. The possible sequences of relevant (R) and control (C) questions on one chart. When we account
for irrelevant questions the number of possible combinations increases.

Features(PolyScore) Weights(β̂) Features(CPS) Weights(β̂)
GSR Range +5.51 SC Amplitude +.77
Blood Volume Derivative 75th Percentile +3.06 SC full recovery time +.27
Upper Respiration 80th Percentile -2.60 EBF +.28
Pulse Line Length -2.087 BP Amplitude +.22
Pulse 55th Percentile +2.16 Respiration Length -.40

Table A5. List of implemented features and their estimated coefficients in version 3.0 of PolyScore [25], and
in CPS [21]. Note that these are on different scale.

Run Training Test
Deceptive Nondeceptive Deceptive Nondeceptive

1 72 47 26 4
2 80 39 18 12
3 80 39 18 12
4 79 40 19 11
5 76 43 22 30

Table A6. Training and test sample sizes for 5 runs in cross-validation by ground truth. Each run has 119
training and 30 test cases, 98 deceptive and 51 innocent.

8.1 Missing Data and Clean up

We put a considerable effort in data clean up to allow further automatic processing and statistical
analyses. Tcl/Tk scripts were written to extract the data fields from the provided text files. The
main problems we encontered were inconsistent labeling, variable test formats and missing relevant
information, e.g. there were various representations of the first irrelevant question: I1, IR1, 1, 1I,
1IR, etc. Similar problem existed with other questions.
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8.2 Average Relevant vs. Average Control

Model Chart1(M5) Chart2 Chart3

Features Weights β̂ (SE) Weights β̂ (SE) Weights β̂ (SE)
Intercept×10 +5.82 (3.56) +7.89 (2.83) +6.21(3.19)
Integrated Difference Electrodermal×105 +4.73 (3.11) +18.1 (4.17) +18.8(8.54)
Integrated Difference Blood Volume×104 +1.25 (0.47) +0.80 (0.34) +2.14(0.72)
Integrated Difference Pulse Frequency×10 −2.12 (0.75) −1.82 (0.65)
Latency Difference Electrodermal×102 +4.59 (3.14) +4.73 (3.31) +8.57(3.49)
Latency Differece Blood Volume×10 +1.72 (1.04)
Spectral Difference Blood Volume×102 +5.86 (3.43)
Spectral Difference Respiration×10 −4.12 (2.56) +2.76(1.63)
Spectral Difference Electrodermal×10 −11.15(7.95)

Table A7. List of features with their estimated coefficients and standard errors for models based on each
chart.

The best model for chart 2 has four of the same features as on chart 1, but instead of high
frequency measure on blood volume it has latency measure for blood volume. The classification
rates drop slightly for deceptive subjects in comparison to model M5, but the model does better
on nondeceptive subjects. It seems that chart 2 data adds some information in particular for
nondeceptive subjects to chart 1, but we could use just chart 1 do get similar results as when we
combine the data from all three charts.

Models based on data from chart 3 do not do as well as models based on chart 1. They do
better than chart 2 on classifying deceptive and worse on classifying nondeceptive subjects. These
models also seem to rely more on high frequency measure for respiration and sweating than data
from charts 1 and chart 2.

8.3 Each Relevant vs. Average Control

Difficulty in this setup is to reduce the number of potential predictors to obtain a model with the
small number of features. The model below is one of the better models when averaged across the
charts that still relies on nine predictors. Sensitivity on training and test data are 88.4% and 86.2%
while specificities are 67.9% and 47.8%. Latencies are correlated, for example, on Edr between
questions one, two and three.

Freatures Weights β̂ (SE)
Intercept×10 +5.35 (4.30)
dEdr1 ×104 +1.18(0.530)
dEdr2 ×104 +1.57(0.75)
dBv2 ×104 +1.06(0.49)
dFqp1 ×10 −1.12(0.782)
dFqp2 ×10 −1.71(1.09)
hPn11 ×102 −5.61(10.01)
hPn13 ×10 +1.16(1.44)
lEdr3 ×10 +1.08(0.63)
lFqp1 ×10 −2.88(1.82)

Table A8. Estimated coefficients and their standard errors of a model based on each relevant to averaged con-
trol comparison. ‘dEdr’ - integrated differences feature, ‘dBv’- integrated differences blood volume, ‘dFqp’-
integrated differences pulse frequency, ‘hPn1’ - spectral properties differences upper respiration, ‘lEdr’ -
latency differences electrodermal, ‘lFqp’ - latency difference pulse frequency. A digit at the end of each
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predictor denotes a relevant question for which the feature was calculated (e.g. ‘dEdr1’- integrated differ-
ences measure on electrodermal signal for the first relevant question when compared to the averaged control).

When models are considered on each chart individually we notice that on Chart 1 most signifi-
cant features are on relevant question 2. On Chart 2 significant features are on questions 1 and 3.
Chart 2 seems to do a slightly better than chart 1 for integrated differences. On chart 3 it’s harder
to say if there are any dominating questions. We only considered differences in questions by their
postions, and not thier semantics.

8.4 Each Relevant vs. Nearest Control

Various models are considered here. The best classifications rates are obtained when we calculate
the relevant-control difference and then average across the charts. We considered models based
only on question position. In the preliminary analysis with 97 training cases model relying only
on the second question does slightly better than either model based on the first or third relevant
question, however, the differences are not significant.

Model below is an example of many similar models that perform 100% correct classification
on the training data, but perform significantly worse on the test data. These models are based
on features when we do not average across the charts. This particular model is only based on
integrated difference feature. ‘rc1Edr1’ for example stands for integrated difference measure on the
first relevant-control question on electrodermal channel on chart 1.

Score = β̂0 + β̂1rc1Edr1 + β̂2rc1Fqp3 + β̂3rc2Edr3 + β̂4rc2Bv2 + β̂5rc2Fqp1 + β̂6rc2Fqp2 +
β̂7rc3Pn21 + β̂8rc3Edr1 + β̂9rc3Edr2 + β̂10rc3Bv1 + β̂11rc3Fqp2
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