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1. INTRODUCTION.

In [2]3 Dunford and Schwartz state a characterization

of the dual space of the space of all absolutely continuous

functions on an interval I. This latter space is represented

by AC(I). In particular each element x* of AC(I)* can

be represented as x*(f) = a f(a) + J gfTds where g is
I

in L (I) -the space of essentially bounded Lebesgue

measurable functions on I.

For the more general class BV(I) of functions of

bounded variation on the interval I = [0,1], T. Hildebrand

in [4], has given a representation theorem for linear

functionals on BV(I), continuous in the weak topology.

In [5] 3 S. Newman defined a more general space of

functions of bounded variation. Such functions and absolutely

continuous functions are defined over an abelian idempotent

semi-group and more particularly over a semi-group of semi-

characters which themselves are defined over an abelian

idempotent semi-group.

The main purpose of our paper is to study in more detail

the space defined in [5]. In this respect let S denote

a semigroup of semi-characters defined over an abelian

idempotent semi-group A and let F denote a fixed func-

tion of bounded variation. Then AC(S,F) denotes all
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functions of bounded variation which are absolutely con-

tinuous with respect to F. The first main result of

this paper deals with the representation of the dual

space of AC(S,F). This representation is obtained via a

fundamentally bounded convex set function K by the formula

T(G) = vjG • dK for all G in AC(S,F), where vjG • dK

is the "variational integral of G with respect to Kff.

Our second main result deals with the so called

Lipschitz functions. It turns out that there exists a

one-to-one and onto correspondence between Lipschitz func-

tions and convex bounded set functions. Moreover the

Lipschitz bound is equal to the bound of the corresponding

'•. convex function. The first two results are a generaliza-

tion of some of the results contained in [3]. The techniques

used in [3] depend strongly on the fact that the functions

are defined on [0,1]. Thus our first main result would,

for example, yield a representation for the dual of

AC(I x I) while the techniques developed in [3] would

not apply to this case.

Our third result is a generalization of the more

classical results contained in, for example, [6]. It will

H be shown that if F and G are functions of bounded

variation in the sense of [5] and if F satisfies some
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side conditions then -=•=• in some sense exists almost
CLr

everywhere.

Throughout the entire paper it will be seen that

much is to be gained when functions of bounded variation

are considered as bounded measures over some algebra.
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2. BASIC DEFINITIONS AND RESULTS.

In this section we will define the notations and

give some of the basic results of [5] which will be

used throughout the manuscript. The latter are used

considerably to obtain the first two main results. We

will make frequent use of notation in [6].

To this end let A denote an abelian idempotent semi-

group and let S be a semi-group of semi-characters on A

containing the identity. Recall that a semi-character on

a semi-group A is a non-zero, bounded, complex valued

function on A which is a semi-group homomorphism. A

semi-character on an idempotent semi-group is an idempo-

tent function and hence it can assume only the values

zero and one.

If f is in S, then A- will denote the set

{a e A : f(a) = 1} and Jf will denote the set {a e A :

f(a) = 0}. Now the sets Jf(feS) generate a Boolean

Algebra G of subsets of A. Let T be the Boolean

algebra of all n-tuples of zeros and ones, let X =

{f...... ,f } be a finite subset of S, and let <j e T

Then if c(i) denotes the i component of G, let

Bix.tr) = ( n A ) n (
cr(i)=l £i
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A set will be called c>f B- type if it is of the form

B(X ,Q) (for some X and for some g ) .

If F is a real valued function on S and if X
n

and Q are as above we can define an operator L by

n
(2) L(X ,CT)F = £ m(<r,T)F( n £.

r e T i=l

where

= 0 otherwise

is the Mobius function for T (see [7]). We note that

in this notation |g| denotes the number of ones in the

n-tuple a. Now we call F a function of bounded variation

on S if

(3) sup £ |L(X ,cr)F| < + OD
X creTn w n

where the supremum is taken over finite subsets X of S.

The norm of F^ written |F| O T 7 is the variation norm of F
DV
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defined by (3) . Let BV(S) denote the set of all func-

tions of bounded variation on S. Then any F e BV(S) is

called positive definite if

L(X,CT)F > 0

for all finite subsets X of S and for all corresponding

a. For a fixed F e BV(S), by AC(S,F) we will mean all

functions G1 in BV(S) such that for any finite set

X = (f-,f2j...,f } of S and for any subset H of T

if e > 0 is given, there exists a 6 > 0 such that

T |L(X -<x)F| < 5 implies £ |L(X ,<J)G| < e .
n eR

Such functions G in BV(S) which satisfy this condition

are called absolutely continuous with respect to F.

Let M(C) denote all bounded, finitely additive

measures defined on the Boolean algebra G generated by

the sets J f(feS). In [5], it was shown that BV(S) is

isometric, isomorphic as an algebra to M(G). If for

F e BV(S), jUp is the corresponding element in M(G) we

have
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where II || denotes the variation of the measure.

Moreover,, if G e AC(S,G) , then n « n and positive

definite functions correspond to positive finitely addi-

tive measures.

Now it is clear that these definitions do generalize

the spaces BV(I) and AC(I) where I is the unit

interval. To see this let A be the semi-group [0,1]

under maximum multiplication (that is x y = max (x,y)

for x,y e [0,1]); and let S = {0 r n , : x e [0,1]} be
[U, XJ

the given semi-group of semi-characters on A where

0r , denotes the characteristic function on [0,x] .
[Uj XJ

Now S under pointwise multiplication is a semi-group

isomorphic to [0,1] with the minimum multiplication.

If we let F(ĵ )r J = x, then we see readily that

BV(S) and ACfS^F) coincide with BV(I) and AC (I)

respectively. For further details see [5].
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3 . MAIN RESULTS,

We now assume that F e BV(S) is a fixed positive

definite function. We first verify that the subspace

AC(S,F) of: BV(S) is a Banach space.

Lemma 3.1. The space AC(SJ,F) of functions of

bounded variation absolutely continuous with respect to

ci fixed positive definite F e BV(S) îs a. closed sub-

ojf BV(S) .

Proof. In [51 it was shown that BV(S) is a

Banach space. Consequently if [P } is a Cauchy sequence

in AC(S.,F) then [P } converges to P e BV(S) in the

variation norm. For each n e N (the positive integers)

let fx be the corresponding elements in M(G) of P

and jUp the correspondent of P. Then {JJ } converges

to /ip in the variation norm. Since fj, is absolutely

continuous with respect to n , it follows that jjp is

also absolutely continuous with respect to u . Thus

P € AC(S,P) .

We can now define the analogue of a "polygonal function"

Let & . denote the characteristic function of B(X,a)

(to simplify notation let us have X = X unless we wish to

emphasize the number of elements in X) and let S = J A Ao
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where A denotes some scalars. Consider now the integral

vs (E) = J S djLtF . Clearly V is absolutely continuous

with respect to ji and thus V corresponds to some

element P e AC(S^F).

Definition 3.2. A function of the form P as demon-
1 s

strated above is called a po1ygona1 function relative to F.

Lemma 3.3. The collection P(S,,F) of polygonal

functions relative to F are dense in AC(S,F) where S

is as defined above.

Proof. This follows immediately from a result in [1]

which states that measures of the type Vc(E) are dense

in the variation norm in the set of measures which are

absolutely continuous relative to \i .

We are now interested in a special class of polygonal

functions. Let G e AC(S,F) and let X = X be a finite

set in S . Let

n

If juF(B(X, a)) = 0 , then /iG(B(X^)) = 0 and the ratio

is defined to be 0. Let



fioj

for all E e G . Clearly V v ~ is absolutely continuous

with respect to fj, . Let pG be the function in AC(S^F)

corresponding to V v _ .

Definition 3.4. The polygonal function pG_- defined

above is called ji polygonal function associated with G.

Lemma 3.5. JEJ: G e AC(S,,F) then G can be approxi-

mated, in the variation norm by polygonal functions associated

with G, that is for e > 0 there exists a finite set X
_ _ _ _ _ _ _ _ _ _ _ _ " - i i i . _ — _ _ — _ j^

such that for all finite sets Y of S such that X c Y = Y ,
_______ _____»____. i _______ i ____>_____. x n • • • n n

the difference | G - pG | < 6 .

Proof. In [5] it is shown that fx is approximated

in the variation norm by V__ ̂  . This establishes the lemma.

Continuing in an analogous fashion we may define the

concept of convex set functions.

Definition 3.6. Let K be a function from all subsets

of A of B-type to the reals. The function K is called

convex (relative to F) if for every BfX^c1) (a € T ) which

is a disjoint union of sets B (Y ,T-) (X c Y and r- € T ) .
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we have

K(B(Xn,a)) = E Aj K(B(Ym,Tj))

where

Aj -

Thus K (B (X , a) ) is a convex combination of K (B (Y , T •) ) •

The function K is called bounded if for some constant C

|K(B)| < C for all sets B of B-type. The least value

of C is called the bound of K and is denoted by ||K|| .

Definition 3.7. Let H be a function from BV(S).

By the variational integral of H relative to the convex

bounded set function K we mean the limit if it exists of

£ L(X , e=)H K(B(X , g)). This limit is denoted by v|H* dK .
m n n «j

Thus if the limit exists in 3.7 then for every e > 0

there is a finite subset X n of S such that for all finite

subsets Y m of S , X
n
 c Ym ' w e h a v e

|v J H dK - T L(Y r)H K(B(Y
Tm
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We can now show that all polygonal functions are

integrable relative to the convex bounded set function.

Lemma 3.8. JLf Pq jus ja polygonal function, then

v J P dK exists. In fact for some finite set Z ĉf: S^

v J Pg dK = £ L(Xn,g)Pg K(B(X,<x))

n

for al l finite subsets X of S with Z c X

Proof. For Z c X = Xn let S = £ A 0 n,_
6 Tn

then Vg(B(X,ff)) = A^ ̂,(B(X,Q)). S O L(X,CT)PS = A^ /iF (B (X, <r)) .

Now let Y = Y be a finite subset of S such that Z c X c ym

and such that B(X,Q) is a disjoint union of sets B(Y_,r-) ,

T-i e T m •
 By t h e convexity of K we have

M W(B(Y, T)
K(B(X,a)) = T A . B ( Y , T . ) where A. = —

TTius we have

or € T r -€T J J

n j m

for all X and Y such that Z cz X c: Y . This completes

the proof of the lemma.
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We now have everything necessary to demonstrate the

first main result.

Theorem 3.9. Let T be ari element in the dual

space AC(S,F)* jof AC(S,,F). There exists a unique convex

bounded function K such that T(G) = v G • dK for all G
• • • • • • • • • • J • ' • " ' • • '

_in AC(S,F). Moreover ||T|| = ||K|| .

Proof, Let X = ( f - , . . . f } be a f in i t e subset of S

and l e t a e T . Define Wv , a measure on G 5 by Wv (E)n A^ Q A^ 0s

jU [B(X,c) 0 E] u (E)
—rr . Since Wv (E) < / p /v—r-r- for a l l

E e C , W < < fj^, . Let 0 be the corresponding

function in AC(S,F). Define K(B(X,a)) = T(0 ) . Since

p jiQ (B (X, cr))

E J T n ^(B(X,,)) •ape,,,)

it follows that p G = Z L(XJ,cr)G J/JV . By Lemma 3.5,

T(G) = lim T(p G ) = lim ( T L(X,ff)G K(B(X,g))) .
X X ffeTn

Thus by Lemma 3.8, T(G) = v J G • dK, since Lemma 3.8 says

that polygonal functions are integrable and Lemma 3.3 says

HUNT LIBRARY
CARNE6IE-MELL0N
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that G is a limit of polygonal functions. Now

llT!L-> S UP I T ( 0 X a ) I = IIK!I s i n c e 10X |fiV = | | v x || < 1 .

Also

|v J G • dK( < |G|BV||K|I ,BV|

SO

Proposition 3.10. Let K be ai convex and bounded set

function. The map which maps G e AC(S^F) _to vjG • dK

is a bounded linear functional on AC(S,F).

Proof. It has been shown that v J G • dK exists

for all G e AC(S,F). In fact

|v J p Gx dK - v J p G dK| .< |p Gx - p G |BV||K|| .

Thus by completeness lim v j p Gv dK exists. So
X

r
J ^ ~x

X

The inequality

|v J G

finishes the proof.

v J G dK = lim vJ p G dK .
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The variational integral enables us to define absolutely

continuous measures relative p . If vc(E) = v I G • dK

where v J G • dK = v J G * dK (G corresponding to the
E

measure u^ (E H ( • ) ) ) , then it is clear that 77̂  is a

finitely additive absolutely continuous measure relative

to M p .

It is now possible to investigate the so-called

Lipschitz functions of BV(S). Let M (F) denote all

convex and bounded set functions (relative to F). Let

BV_(S,,F) denote all functions G e BV(S) satisfying the
Li

following: |L(X, a)G| < DL(X,g)F for all finite subsets X

of S, 0s e T and where D is some positive constant

and F is positive definite.

Definition 3.11. The functions G e BV_ (S,F) defined

above are called Lipschitz functions (relative to F) or F-

Lipschitz.

It is now possible to show that there is a one-to-one,

onto linear map from BV (S,F) onto M (F). Hence as

vector spaces the Lipschitz functions are isomorphic to

the set of convex functions.

Theorem 3.12. The spaces BV (S^F) and M (F) are

isomorphic as vector spaces. Moreover the Lipschitz bound
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of _a function in BV (S, F) _is_ equal to the bound of the

corresponding convex set function in M (F).
c

Proof. Let K € M c (F) and let /iK(B) = jLtp (B) K(B)

for all B-type sets B. Now for a finite disjoint family

of sets B i of B-type, ^ ( U B±) = np (U B±) K(U B±) .

By convexity

TTius

B±) = Z

and fj, < < juF • Let H be the corresponding function

to [I in AC(S^F). Now

= !|K||L(X,CT)P .

Thus H is a Lipschitz function and the Lipschitz bound

is less or equal to jJKJl .

Now let H be a Lipschitz function, define



Then

E(X,o))

Vhsre the union is taken over a e Tfi .

convex and ll^(B(x,0)) | ̂  c ^(8(x,e)) (

the Lipschitz bound for H ) i m pl i e s c .
c i s



4. DERIVATIVE ANALOGUES.

It is now possible to develop results analogous to

those found in the usual treatises for example as found

in [6J• If F and G are two functions from BV(S)

dG
we would like to be able to say that the derivative -==•

exists jUp a.e. It should be pointed out that even

if JLU is absolutely continuous with respect to JUF the

Radon-Nikodym derivative fails since the measures are only

finitely additive. At best the derivative is represented

by a net as is pointed out in [5].

The following assumptions should be made.

(i) The measures LU and u- can be extended as
""—"—'~~ ' VJ . • £ ' ' — — — — — — — — —

countably additive set functions to (I 3 the g- field

generated by G.

(ii) .For .all X .and a , ^ (B (X, c)) ? 0 .

(iii) For every e > 0 there exists ja set of the

form B(X,cr) such that u_ (B (X, g) ) < e .
• — — — — — — — . r~j-i

Hence we are essentially assuming that the represen-

tative measures of F and G are extendable, that fj,

is faithful and that "there exists enough elements of S

relative to the measure jUp
ff, or in a more intuitive

manner, X , can be picked large enough so that B(X,a)

has small measure. Of course such is the case if S can

be identified with an interval.
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Here we give a slightly modified version of Vitali's

covering.

Definition 4.1. Let B be all sets of B-type in A

I(he collection 8 is expansive at JL point x in A if

whenever C e B, x e C and C n D ^ 0 where D e B and

/ip (C) < k /i (D) for some real constant k then there is

a D! 6 |R such that x e Df , D c Df and Up(D!) < k M

If 5 is some sub-collection of B and if E c A then 2?

forms a V-covering of E if for every x e E ., e > 0 and

x e B e B there is a C e 5 such that x e C c B and

/ip (C) < e . It will be said that A has the V-property

if for every E c A and for every V-covering ff of E

and e > 0 there exists a sequence {B1^...,B } of pair-

wise disjoint sets in 3 such that

n
/iF*(E - U B±) < € .

We shall denote the outer measure generated by jju,

a s Mp* •

Lemma 4.2. _If B is expansive at each point x

in A 9 then A has the V-property.

Proof. Choose disjoint sets from a V-covering 3»

of a subset E of A as follows:



[20]

Let B.. be arbitrary and say B..,B9,...B have been chosen.
J- JL i£ XJ.

Let K n = sup /iF(B ) where the sup is taken over all sets B

of I? which are disjoint from B-.,B2,...B . Clearly 0<^K < OD
n

If E (f: U B. obtain a set B - such that /i (B -) > K

n
 i = 1 ~

(E - U B. is a set in C and thus contains a set of 3* ) .

N
Now for N large enough £ ̂  n (B.) < e . Let R = E - U B. .

N+l X i=l X

For x e R , there exists C e 5 such that x G C ^ C is

disjoint from B1:,B2J,...B . Suppose that C is disjoint

from B1,B2,...Bn , then up (C) <; Kn < 2 M p (
B
n + 1 ) .

Since E ̂  fj, (B.) < e it follows that /i (B ) -• 0 .
N+l * x * n

On the other hand Mp(C) / 0 ; thus C intersects

some B . Let k be the first integer such thatn

C n B, j£ 0 (k > N) . Since B is expansive at each x

k k
in A, there is a D e 6 such that /x (D ) < 2 pu(B.).

Therefore

(R) < 2 L MF(Bk) < 2
k>N * K

In particular there exists Q e G , the g-field generated

by C (Q is a countable disjoint union of sets of G) such

that M F*(
E~ Q) = 0 .
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It should be remarked that if the fundamental sets

are taken to be half open intervals of A = I, then A

has the V-property.

Definition 4.3. Let [C } be a sequence of sets

of the B-type. The sequence (cn3 converges to the

point p e A if

(1) fj, (C ) converges to zero.

(2) For every set B of B-type such that

C c B for all but a finite number of n .n

(3) p e C for all n .

If C converges to p we shall write C -• p .
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Lemma 4.4. Assume that for every p e H c A ,

L(Cn)G
lim inf T , , _ < r for some sequence [C } converging

to p. Let H c B where B JLS. il. countable union of dis-

joint sets of B- type. Then B contains <a set Q e G

such that jiF*(H - Q) = 0 and ^Q(Q) < r jLftp(Q).

Proof. Consider H c B and let 3 denote all

sets C of B-type such that L (C) G < r L (C) F 9 C c B .

Then r? forms a V-covering of H. By Lemma 5 there

exists a set Q in IF which is a countable disjoint

union of sets of B-type and L U M H - Q) = 0. Let Q = U B
^F n

Then

MG(Q) = 2fiG(Bn) < r = r

L(Cn)G
Lemma 4.5. If for each p jln H, lim sup ,c \-p >

 r

for some sequence [C } converging to p and if H c B

where B _is ji countable union of sets of B- type. then B

contains a set Q in the q - f j.elfl G" such that u^(Q) > riin(Q)

and Mp*(H - Q) = 0.
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Proof, The argument follows that in Lemma 4.4 once we

let 3? be all sets C of B-type such that L(C)G > r L(C)F

and C a B.

Definition 4.6. Let F and G be two functions

in BV(S) satisfying conditions (i), (ii), and (iii) 3

let p e A and assume that there exists at least

one sequence fc } converging to p. By the derivative

dG L(Cn)G
-r=r(p) we mean lim , N where the limit is independent
d F Cn^p

 L ( c
n
) F

of the sequence [C } converging to p.

Theorem 4.7. Assume that every p e A JLS the limit

of at least one sequence (C }. Then for some set E with

dG
//p*(E) = 0 , dF^P) exists for all p e A - E.

Proof. Due to the Jordan decomposition we may assume

that G is positive definite. Let

L(Cn)G L(Cn')G
E = {p € A: lim sup , , > lim inf • ,y

Cn-*p
 L ( C

n
) F Cn« -p

 L ( Cn ) F
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where {C } and {C '} denote two sequences converging

L(C )G m.1 m L(C

to p. Let

m 1 m

If jip*(E) 7̂  O then for some positive integers i and j ,

u *(E. •) ̂  0. Let k = inf ^(B) where B e G . Then

k > o and there exists B 2 e C such that jUF (B ) < k + e

By Lemma 4.4 there exists also a set Q, such that

1 1 ^ PF x i,i ^ly ^

< f /iF(Qi) < J

Now consider E i . fl Q 1 . Since Q̂ . is itself a countable

union of disjoint sets of B-type, Lemma 4.5 provides a

set Q9 e G , Q c Q n* (E. . p Qn - Qo) = O , and
z ^ X 1., J ± Z

U (Q9) > —r- JU^CQO) • N o w t h e s e t E. . is contained in

the disjoint union of the sets Q2> E± . - Q-. , and

E i . D Q 1 - Q 2 . Consequently
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iuF^(Ei^j) £ »F*{Q2) and »F*(Q2) > * • A lso for

every e > 0 ,

uG(Q2) ^ MG^I> < f (k+G)^ k < ^ ( Q 2 )

which is a contradiction. Hence JU F*(E) = 0 . This

completes the proof.

Corollary 4.8. Let F and G !be two functions in

BV(S) . Suppose the measure u jLs extendable to G as

ii countably additive measure and assume that

(1) uF(B(X, cr)) T ^ O lor M i X aLnd g

(2) given e > 0 there exists a. set B £f B~ type

such that MF(B) < e .

the function G jLs Lipschitz relative to F.

Then ^r(p) exists,, except on a null set, if for every

p € A there is at least one sequence [C } converging

to p.

Proof. With the above hypothesis jur extends as

a countably additive set function to G , the Q-field

generated by G .
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