
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



HYDRA: THE KERNEL OF A 
MULTIPROCESSOR OPERATING SYSTEM* 

Wulf, Cohen, Corwin, Jones, Levin, Pierson, Pollack 

JUN 1973 

Abstract 

This paper describes the design philosophy of HYDRA - the kernel of an 
operating system for C.mmp, the Carnegie-Mellon Multi-Mini-Processor. This 
philosophy is realized through the introduction of a generalized notion of 
'resource', both physical and virtual, called an 'object'. Mechanisms are presented 
for dealing with objects, including the creation of new types, specification of new 
operations applicable to a given type, sharing, and protection of any reference to 
a given object against improper application of any of the operations defined with 
respect to that type of object. The mechanisms provide a coherent basis for 
extension of the system in two directions: the introduction of new facilities, and 
the creation of highly secure systems. 

•This work was supported by the Advanced Research Projects Agency of the 
Office of the Secretary of Defense (F44620-70-C-0107) and is monitored by the 
Air Force Office of Scientific Research. 



THE HYDRA KERNEL 2 

Introduction 

The Hydra system is the 'kernel' base for a collection of operating systems 
designed to exploit and explore the potential inherent in a multiprocessor 
computer system. Since the field of parallel processing in general, and 
multiprocessing in particular, is not current art, the design of Hydra has a dual 
goal imposed upon it: (1) to provide, as any operating system must, an 
environment for effective utilization of the hardware resources, and (2) to 
facilitate the construction of such environments. In the latter case the goal is to 
provide a meta-environment which can serve as the host for exploration of the 
space of user-visable operating environments. 

The particular hardware on which Hydra has been implemented is C.mmp, a 
multiprocessor constructed at Carnegie-Mellon University. Although the details of 
the design of C.mmp are not essential to an understanding of the material which 
follows, the following brief description has been included to help set the context 
(a more detailed description may be found in [WB72]). Figure 1 illustrates that 
C.mmp permits the connection of (up to) 16 processors 32 million bytes of shared 
primary memory through a cross-bar switch (Smp). The processors are any of 
the various models of PDP-11* minicomputers. Each processor is actually an 
independent computer system with a small amount of private memory, secondary 
memories, i/o devices, e t c Processors may interrupt each other at any of four 
priority levels; a central clock serves both for unique-name generation (see 
below) and broadcasts a central time base to all processors. Relocation hardware 
(D.map) on each processor's bus provides mapping of virtual addresses on that 
bus to physical addresses in shared primary memory. 

•Manufactured by Digital Equipment Corporation. 



THE HYDRA KERNEL 

FIGURE 1; CMU MULTl-M1WI-PI\0CRSS0f\ 

H K c 

Kio 

KC r i 

K.clock 

K.inntcrrupt 

> Kip 

WHEREi 

Hp • PRIMARY tlEttORY; Pc « PROCESSOR} 

Snp « PROCE^SOR-TO-ttErtQRY SWITCH; 

Step » PROCESSOR-TO-IO SWITCH; 

Dmap • ADDRESS RELOCATION flAP; 

Kio « 10 DEVICE CONTROLLERS 

Kc - SPECIAL IIPROlinRE CONTROL 

K.clock • 60-BIT CLOCK 

K. Innt'orrupt » INTER-PROCESSOR INTERRUPT 



THE HYDRA KERNEL 4 

Design Philosophy 

The design philosophy of Hydra evolved from both the environment in which 
the system was to function and a set of principles held by its designers. The 
central goals of the system together with the attitudes expressed below suggest 
that, at the heart of the system, one should build a collection of facilities of 
'universal applicability' and 'absolute reliability' — a set of mechanisms from 
which an arbitrary set of operating system facilities and policies can be 
conveniently, flexibly, efficiently, and reliably constructed. Moreover, lest the 
flexibility be constrained at any instant, it should be possible for an arbitrary 
number of systems created from these facilities to co-exist simultaneously. The 
collection of such facilities has been called the kernel or nucleus [Br70] of an 
operating system. The more specific considerations are listed below: 

1. Multiprocessor environment: Although multiprocessors have been 
discussed for well over a decade and a few have been built, both the 
potentials and problems of those systems are dimly perceived. The 
design of Hydra was constrained to be sufficiently conservative to 
insure its construction and utility in a reasonable time frame, yet 
flexible enough to permit experimental exploration within the design 
space bounded by its hardware capabilities. 

2. Separation of mechanism and policy: Among the major causes of our 
inability to experiment with, and adapt, existing operating systems is 
their failure to properly separate mechanisms from policies. (Hansen 
[Br70] has presented that policy. This systematic exclusion from the 
kernel of policy-making code markedly contributes to the flexibility of 
the system, for it leaves the complex decisions in the hands of the 

. person who should make them - the higher-level system designer. 
When necessary, the kernel instantiates policy decisions by invoking 
various "policy modules" in a higher level system associated with the 
program for which the decision must be made. Thus, the designer of 
an operating environment for C.mmp is obligated to consider precisely 
those units of code which are his exclusive responsibility. We believe 
this represents a major step forward from conventional systems. 

. 3. Integration of the design with implementation methodology: It has 
been observed that the structure of extant operating systems bear a 
remarkable resemblance to that of the organization which created 
them. This observation is one of a set which asserts the (practical) 
impossibility of separating the design from the methodology to be 
used in implementing the design. The authors' predisposition for 



THE HYDRA KERNEL 

implementation methodology is a cross between structured 
programming as advocated by Dijkstra and others [DDH72] and the 
modularization philosophy of Parnas [Pa71]. 

4. Rejection of strict hierarchical layering: The notion of a strict 
hierarchically layered system has become popular since first 
described by Dijkstra for the THE system [Dij68a]. While we believe 
that the system as viewed by any single user should be hierarchically 
structured, we reject the notion as a global design criterion. We 
believe that if the entire system is so structured, the design will 
severely limit the flexibility available to the high-level user and will 
strangle experimentation; in particular, there is no reason to believe 
that the same hierarchical relation should exist for control as for 
resource allocation, or as for protection, etc. 

5. Protection: Flexibility and protection are .closely related, but not 
inversely proportional. We believe that protection is not merely a 
restrictive device imposed by "the system" to insure the integrity of 
user operations, but is a key tool in the proper design of operating 
systems. It is essential for protection to exist in a uniform manner 
throughout the system, and not to be applied only to specific entities 
(e.g., files). The idea of capabilities (in the sense of Dennis [DVH66]) 
is most important in the Hydra design; the kernel provides a 
protection facility for all entities in the system. This protection 
includes not only the traditional read, write, execute capabilities, but 
arbitrary protection conditions whose meaning is determined by 
higher-level software. 

6. Reliability: The existence of multiple copies of critical hardware 
resources suggests the possibility of highly reliable operation. Our 
desire is to provide commensurate reliability in the software. We 
include under the title reliability - data integrity, both system and 
user; crash rate; percentage of uptime, etc. In conventional 
multiprogramming and timesharing systems reliability is heavily 
weighted by the hardware reliability and, in general, if the (central) 
processor goes down, the system goes down - often with a 
considerable loss of information. In a uni-processor configuration the 
alternatives are few, while common sense suggests that a symmetric 
multiprocessor arrangement should be able to do better. A primary 
consideration in the design of Hydra is the desire for intelligent 
detection of, and recovery from, hardware failures. (By "intelligent" 
we do not mean "take a core dump and reload".) In a multiprocessor 



THE HYDRA KERNEL 6 

configuration it should be possible to isolate and disable a 
malfunctioning processor and transfer its load to the remaining ones 
with a minimal loss of continuity. Thus, symmetry considerations in 
the design of the hardware and software are most important. 

Data consistency is as important as execution continuity, particularly 
if the protection facility available at the kernel level is to be reliable. 
It is essential to store vital data in such a fashion that the chances of 
recovering from a random memory failure are maximized. As a 
natural result of the protection mechanism, "vital data" includes not 
only kernel tables but also data structures in the higher-level 
software whose content is uninterpreted by the kernel, but whose 
form is precisely known. Thus, we can provide the same consistency 
checks for higher-level systems that we use for the kernel. 

Another point should be made in connection with reliability. Integrity 
of form may be sufficient to allow the lowest levels of the system to 
function, but integrity of content is much more important to higher-
level software. When a hardware malfunction occurs, the kernel must 
ascertain and correct any resulting errors in its own operations (e.g., 
verifying a table), but this is not sufficient in itself. Higher-level 
programs must be notified that a malfunction has occurred which may 
have altered some program or data entity [Pa72] (this is another 
example of the non-hierarchical organization of Hydra). Reliability 
requires intelligent error handling at all software levels in which this 
type of recovery behavior is possible. 

Defining a kernel with the attributes given above places an awesome 
responsibility upon its designers. It is, nevertheless, the approach taken in the 
Hydra system. Although we make no claim that the set of facilities provided by 
the Hydra kernel is either minimal (the most primitive 'adequate' set) or maximally 
desirable, we do believe the set provides primitives which are both necessary 
and adequate for the construction of a large and interesting class of operating 
environments. It is our view that the carefully chosen, well-integrated set of 
functions provided by Hydra will enable the user of C.mmp to create his own 
operating environment without being confined to pre-determined command and 
file systems, execution scenarios, resource allocation policies, etc. 

Given the general decision to adopt the 'kernel system' approach, the question 
remains as to what belongs in a kernel and, perhaps more importantly, what does 
not. Non-specific answers to this question are implicit in the attitudes 
enumerated earlier, e.g., a set of mechanisms may be appropriate in a kernel, but 



THE HYDRA KERNEL 7 

policy decisions certainly are not. For other, more specific, answers we must 
step outside these attitudes alone and consider the nature of the entity to be 
built using the facilities of a Kernel. 

If a kernel is to provide facilities for building an operating system, and we 
wish to know what these facilities should be,then it is relevant to ask what an 
operating system is. or does. Two views are commonly held: (1) An operating 
system defines a Virtual machine' by providing facilities, or resources, which are 
more convenient than those provided by the 'bare' hardware, and (2) An 
operating system allocates (hardware) resources in such a way as to most 
effectively utilize them. Of course these views are, respectively, the bird's-eye 
and worm's-eye views of what is a single entity with multiple goals. 
Nevertheless, the important observation for our purposes is the emphasis placed, 
in both views, on the central role of resources — both physical and virtual. 

The mechanisms provided by the Hydra kernel are all intended to support the 
abstracted notion of a resource (incarnations of a resource are called objects). 
These mechanisms provide for the creation and representation of new types of 
resources, as well as operations defined on them, protected access to instances of 
one or more resources within controlled execution domains, and controlled 
passing of both control and resources between execution domains. The key 
aspects of these facilities are the generalized notion of resource, the definition of 
an execution domain, and the protection mechanism which allows or prevents 
access to resources within a domain. 

Overview OL the. Hydra Environment 

Before proceeding to a detailed description of the mechanisms it will be 
convenient to present a somewhat incomplete and simplistic view of the execution 
environment created by the Hydra kernel. The material presented in this section 
will be elaborated further in the following sections; however, the overview will 
attempt to provide the context necessary to understand the more detailed 
information. 

In order to understand the execution environment which the kernel provides, 
one must clearly understand the interrelationships of three object types: 
procedure, LN£> and process. These primitive objects are provided by the kernel 
specifically for the purpose of creating and manipulating an execution 
environment. 

The procedure object is simply an abstraction of the intuitive notion of 
procedure or subroutine; that is, a procedure has some "code" and some "data" 



THE HYDRA KERNEL 8 

associated with it, it may accept parameters, and it may return values. Hydra 
procedures go beyond this simple model by including protection facilities, as we 
shall see shortly. The act of creating a procedure object is analagous to the task 
of writing an ALGOL procedure; one produces a body of code, associates the code 
with a name, declares the data which the code requires, and specifies the nature 
of the parameters and return values which are involved. In more abstract terms* 
one creates a sequence of instructions and describes the environment in which 
they will ultimately execute; in Hydra this abstraction is made precise. Let us 
consider the environment description first. 

A procedure object contains a list of references to other objects which must 
be accessed during the execution of the procedure's code. This is, in fact, a list 
of capabilities [La69] and therefore defines not only which objects the procedure 
may reference, but also what actions it may perform on those objects. The 
capabilities which a procedure requires may be divided into two groups: those 
which are caller independent and those which are caller dependent. These 
groups naturally correspond to those objects which the procedure always 
accesses (at least potentially), and those objects which are considered 
parameters. Obviously, the former of these groups can be precisely specified at 
the time the procedure is created, while the latter can only be characterized, 
since the actual objects passed as parameters are unknown until execution time. 
Thus, the environment defined by a procedure object contains some "holes" or 
"parameter positions" which are only partially specified at creation time. These 
holes are filled in for each execution of the procedure, using capabilities provided 
by the caller. We will return to a discussion of the mechanism by which a 
procedure characterizes its parameters, but first we must examine the LN£. 

A procedure is a static entity; an LNS (Local name space) is the record of the 
execution environment of a procedure when that procedure is invoked (called). 
There is a unique LNS for each invocation, which disappears after the procedure 
terminates. The LNS for a particular invocation is the result of combining the 
caller-independent capabilites (listed in the procedure object) with caller-
dependent actual parameters (only characterized in the procedure object) to form 
a single list of capabilities. The LNS defines the totality of capabilities available 
to a procedure during the execution resulting from a particular invocation. The 
elements of an LNS are called items and consist of a reference to an object 
together with the capabilities just described. Note that the LNS, while heavily 
dependent upon the corresponding procedure for its initialization, is a wholly 
independent object thereafter, and alterations of the LNS do not affect the 
procedure object; this implies, among other things, that procedures are reentrant 
and potentially recursive. 



THE HYDRA KERNEL 9 

A procedure object may contain templates for items in addition to the usual 
collection of caller-independent capabilities. Templates characterize the actual 
parameters expected by the procedure. When the procedure is called, the slots 
in the LNS which correspond to parameter templates in the procedure object are 
filled with "normal" items derived from the actual parameters supplied by the 
caller. This "derivation" is, in fact, the heart of the protection-checking 
mechanism, and the template defines the checking to be performed. If the caller's 
rights are adequate, an item is constructed in the (new) LNS which references the 
object passed by the caller and which contains rights formed by merging the 
caller's rights with the rights specified in the template. This implies that a callee 
may have greater freedom to operate on an object than the caller who passed it 
as a parameter, but the caller can in no way obtain that freedom for. himself. We 
shall see that this potential expansion of rights across environment domains is a 
key factor in achieving the flexibility goals of the kernel and in allowing us to 
reject hierarchical structures without introducing chaos. 

Before proceeding let us review the major actions of the CALL mechanism. An 
executing body of code first notifies the kernel that it wishes to call a procedure. 
The kernel examines the actual parameter items specified by the caller and 
determines whether all protection requirements are met. If so, the kernel creates 
a hew LNS which defines the new environment; the caller's LNS is superceded by 
this new LNS for the duration of the called procedure's execution. The body of 
code associated with the callee receives control from the kernel and begins 
executing. When it completes its function, it will return control to its caller by 
way of the kernel. The kernel will delete the callee's LNS and restore that of the 
caller, thus returning to the previous environment. 

Processes 

Up to this point, nothing we have described suggests any exploitation of the 
parallel processing capabilities of C.mmp. The actions involved in calling and 
returning from procedures are strictly sequential in nature, being in essence 
formalizations of traditional subroutine behavior. We come now to the unit of 
asynchronous processing in Hydra - the process. A process in the technical 
sense defined by Hydra corresponds closely to one's intuitive notion of a process. 
Viewed from the outisde, it is the smallest entity which can be independently 
scheduled for execution. Viewed from the inside, it constitutes a precise record 
of the changes of environment induced by a sequence of calls. In other words, a 
process is a stack of LNS's which represents the cumulative state of a single 
sequential task. Hydra implements inter-process communication and 
synchronization by providing elementary message buffering primitives and 
Dijkstra-style semaphore operations. These facilities are well-understood 
[Dij68b] and will not be discussed here. 



THE HYDRA KERNEL 10 

Scheduling a process for execution involves two fundamentally different tasks: 
(1) making policy decisions which determine the process's priority, and (2) 
performing the mechanical job of starting the process when the proper time 
arrives. The former of these tasks is associated with the so-called scheduling 
algorithm and is implemented via policy modules which reside outside the kernel. 
The kernel handles the second task by providing a scheduling mechanism which 
performs process multiplexing according to parameters set by the higher-level 
policy-maker. These issues wil be discussed more fully later when the 
appropriate context is available. 

Ihfi. Protection Mechanism 

The protection mechanism is at the heart of the Hydra design. In describing 
the mechanism it is important at the outset to distinguish between protection and 
security and to determine what is to be protected and against what. 

Protection is, in our view, a mechanism. A system utilizing that mechanism may 
be more or less secure depending upon policies governing the use of the 
mechanism (for example, passwords and the like are policy issues) and upon the 
reliability of the programs which manipulate the protected entities. Thus the 
design goal of the Hydra protection mechanism is to provide a set of concepts and 
facilities on which a system with an arbitrarily high degree of security may be 
built, but noi to inherently provide that security. A particular consequence of 
this philosophy has been to discard the notion of 'ownership'. While ownership is 
a useful, perhaps even important* concept for certain 'security' strategies, to 
include the concept at the most primitive levels would be to exclude the 
construction of certain other classes of truly secure systems. 

Our rejection of hierarchical system structures, and especially ones which 
employ a single hierarchical relation for all aspects of system interaction, is also, 
in part, a consequence of the distinction between protection and security. A 
failure to distinguish these issues coupled with a strict hierarchical structure 
leads inevitably to a succession of increasingly privileged system components, and 
ultimately to a "most privileged" one, which gain their privilege exclusively by 
virtue of their position in the hierarchy. Such structures are inherently wrong. 
and are at the heart of society's concern with computer security. Technologists 
like hierarchical structures; they are elegant, but experience from the real world 
shows they are not viable security structures. The problem, then, which Hydra 
attempts to face squarely, is to maintain order in a non-hierarchical environment. 

The obvious candidate for (the unit of) protection is the obj&ct since this is 
the abstracted notion of an arbitrary resource. Similarly, the Hydra procedure is 



THE HYDRA KERNEL 11 

considered to be the abstraction of an operation. Thus Hydra provides a 
protection mechanism for the application of operations (procedures) to instances 
of resources (objects). All of the familiar security for files (e.g., read, write, 
delete), memory (e.g., read, write, execute), etc., can be conveniently modeled in 
this way. In addition a large additional class of secure systems can be built. 

Everything of interest in the Hydra view is the abstracted notion of a 
resource, called an object, or a reference to an object, called an item. Each 
object has a unique name, a type part, and a representation (consisting of an item 
part, and a data part). 

The unique name of an object distinguishes the object not only from all other 
extant objects, but from all objects which have existed or will exist. Knowledge 
of the unique name of an object does noi grant access to the object since, objects 
may only be referenced through items (which are not manipulable except by the 
kernel). 

The type part of an object serves to identify the object with that class of 
objects whose type parts have an identical value. The type part contains, in fact, 
the unique name of a distinguished object which serves as the representative of 
such a class. Since there is a potentially infinite supply of unique names, there is 
a potentially infinite number of object types as well. A new class of objects may 
be created simply by creating a single object to serve as its distinguished 
representative. 

Objects become inaccessible only when there are no references to them. It is 
possible to generate self-referential structures, and although a general garbage-
collection deletion mechanism is required, these structures are rare. Hence a 
reference count is maintained in each object and objects are deleted* when this 
count becomes zero. 

The representation portion of an object contains whatever information is 
relevant to the representation of the resource which the object denotes. This 
information may be of two types: data (which is uninterpreted by the kernel) and 
references to other objects. These two kinds of information are stored in the 
data and item parts of the object respectively. Given the appropriate access 
rights a program may manipulate the data part of an object freely. Even with the 
most liberal access rights, however, the item part of an object may be 
manipulated only by invocation of kernel functions. 

•The deletion strategy is not essential to an understanding of Hydra, therefore 
this attribute of objects will not be discussed further. 



THE HYDRA KERNEL 12 

On purely formal grounds, the object-universe described above may be 
derived by starting with a single distinguished object whose unique name** is 
TYPE and whose type is TYPE — that is, it names itself as the representative of 
the class with only a single member. Subsequent objects are created by naming 
an extant object as their representative. Although it is possible to allow any 
object to serve as the representative, nothing is gained by doing so; therefore, 
we restrict the representatives to being objects whose type is TYPE. Consider, 
for example, the following collection of objects: 

NAME TYPE 

TYPE TYPE 
PAGE TYPE 
FILE TYPE 
DISK TYPE 
PI PAGE 
P2 PAGE 
F l FILE 
Dl DISK 
D2 DISK 

In this case we have four distinct classes of objects: TYPE, PAGE, FILE, and 
DISK. The objects with these names and type TYPE are the representatives of 
the classes. The members of the classes are, respectively, {TYPE, PAGE, FILE, 
DISK}, { P I , P2}, {F l } , {D l , D2}. Thus, for example, PI and P2 are actual page 
objects; presumably the data part of these two objects would contain the actual 
bit configurations one would expect to find in our usual intuitive concept of a 
page. Notice that we have purposely used objects in the example to represent 
both virtual resources (files) and physical resources (disks); this is precisely how 
they are used in Hydra. 

On practical grounds, it is both inconvenient and inefficient to begin with a 
single distinguished object. The following object types are some of those present 
in the base system: 

**We have tried to use suggestive names for objects in the example. In 
practice, of course, the unique names of objects have no visible representation; 
they are 64-bit values obtained from K.clock (Figure 1). 



THE HYDRA KERNEL 13 

TYPE 
NULL 
LNS 
PROCEDURE 

PROCESS 
SEMAPHORE 
PAGE 

as described above 
the empty object 
the 'current' LNS defines the execution 
combined code and partial environment 
(complete environment definition when 
procedure is 'called') 
the smallest separately schedulable 
Dijkstra style [Dij68b] synchronization 
the counterpart of pages in TSS, etc. 

{various device-type objects, e.g., disk} 

As mentioned briefly several times previously, in addition to objects Hydra 
supports references to. object? (called items). Items are, however, more than 
simple pointers. Together with the CALL mechanism (for crossing execution 
domains), items are the key to the protection mechanism. As such, items may only 
exist in the item part of an object and may be directly manipulated only by the 
kernel. 

Each item includes information detailing the operations which may be 
performed on the object referenced by the item. This information is in the form 
of a capability list [La69], called the rights list; hence an item consists of two 
parts: the name of an object and a rights list. Whenever an operation is 
attempted on an. object, the requestor supplies an item referencing that object. 
The kernel examines the rights list and prevents the operation when a protection 
failure occurs (i.e., when the requestor does not have the appropriate 
capabilities). It is important to understand that the rights checking operation 
does not require interpretation of the list; the kernel can determine when a 
protection failure has occurred without assigning meaning to the individual rights 
bits. 

Not all rights are type-dependent; there exist operations worthy of protection 
which are well-defined for any object. These are precisely the operations which 
the kernel provides for controlled manipulation of objects. Accordingly, we 
partition the rights list of an item into two mutually exclusive sets — the type -
independent rights (called kernel rights), and the type-dependent rights (called 
auxilliary rights). A 'right' in either set grants permission to pass the item as a 
parameter to any procedure in a particular class. The kernel defines these 
classes for type-independent rights, and the creator of the type defines them for 
auxilliary rights. 

The notions of object and item now permit us to be more specific about one of 



THE HYDRA KERNEL 14 

the object types mentioned earlier - the LNS. At any instant of time.the' 
execution environment of a program is defined by an LNS object associated with 
it. The item part of the LNS contains references to objects wich may be accessed 
by that program at that instant. (In addition, of course, the program may be able 
to access objects referenced by the objects referenced in its LNS, and so on.) 
The LNS provides a mapping function between local names in a program (i.e., small 
integers naming 'slots' in the LNS) and globally unique objects. More than this, 
however, the rights lists in each item define the permissible access rights of this 
program at this instant. 

Thus far we have described two essential elements of the protection 
mechanism, objects and items. The third and final element is the rule governing 
the passing from one execution domain to another and how protection changes at 
this interface. The execution domain is, at any instant, defined by the current 
LNS and an LNS is uniquely associated with an invocation of a procedure; thus, 
execution domains change precisely when a procedure is entered or exited. The 
kernel provides two primitive functions, CALL and RETURN which allow a 
procedure to invoke a new procedure or to return to the current procedure's 
caller. 

The essential function of the CALL mechanism is to instantiate a procedure: to 
create an LNS for its execution domain, and to transfer control to the code body. 
The essential aspect of the CALL mechanism for the present, however, is its 
parameter passing/checking mechanism. Since a procedure is an object it has an 
item- part; this item part serves as the prototype for the procedure's LNS when it 
is instantiated (i.e.* the procedure is CALLed). Thus the item part of a procedure 
contains items which reference the caller-independent capabilities of any 
invocation of the procedure. 

In addition, the item part of a procedure may contain parameter templates for 
items which will be passed as actual parameters when the procedure is CALLed. 
The template contains a type attribute, which specifies the required type of the 
corresponding actual parameter. (One can also have a template which accepts 
any type.) If a type mismatch occurs, the call is not permitted and an error code 
is returned to the caller. If the types agree, the rights are then checked, using a 
special field present only in templates called the "check-rights field". The rights 
contained in the actual parameter item must include the rights specified in the 
check-rights field of the template; otherwise, a protection failure occurs and the 
call is not permitted. If the caper's rights are adequate, an item is constructed in 
the (new) LNS which references the object passed by the caller, but which 
contains a rights list specified by the template. (A template has a "regular" rights 
field distinct from the check-rights which specifies the rights which the callee (i.e., 



THE HYDRA KERNEL 15 

the procedure) will need to operate on the actual parameter.) This implies that a 
callee may have greater freedom to operate on an object than the caller who 
passed it as a parameter, but the caller can in no way obtain that freedom for 
himself (since the additional rights are present only in the callee's LNS - the 
caller's LNS is unchanged). Also, by appropriate use of the check-rights and type 
fields in a template, the creator of a procedure can implement arbitrary type -
dependent protection checking. (This follows from the observation that the 
check-rights field is not interpreted by the kernel; the interpretation of the 
auxilliary rights is up to the user.) 

An Example 

In this section we present an example which demonstrates the power of the 
protection mechanism described above to accomplish in a natural way a kind of 

protection wwich can be achieved in existing systems, if at all, only by rather 
artificial devices. While the specific example is itself somewhat artificial, it has 
very realistic counterparts. 

Consider the case of a research worker who, being a diligent fellow, wishes to 
keep himself abreast of the relevant literature in his field. Also having access to 
a computer, this researcher has written sbme programs to maintain an annotated 
bibliography on that computer. The programs permit him to update the 
bibliography either by inserting new entries or changing existing ones; he may 
also print the bibliography in total, or selectively on any one of several criteria; 
he may also wish to completely erase an entire bibliography occasionally. In 
addition, our hero has organized both the programs and the bibliography 
structure to be very efficient. It's a nice system of programs, indeed! 

Now, in the fullness of time, the researcher decides that it would be to his 
advantage to allow his colleagues, and perhaps his students, to use his programs 
and his bibliographies. In addition to creating their own independent 
bibliographies, the colleagues may be able to add new entries to the researcher's 
own or to add annotations which (may) provide the researcher with additional 
insights. He is concerned, however, about several aspects of the protection of 
both his programs and data: 

1. No one, except himself, should be able to erase his bibliographies. 

2. He worked hard on his system of programs and he would not like 
anyone else to copy or modify them. In any case his supervisor has 
informed him that since the programs were developed on the 
employer's time, the employer is considering selling them as a 
proprietary package. 



THE HYDRA KERNEL 16 

3. Some of the items cited in his own bibliography were written by his 
colleagues. His annotations are occasionally cryptic, and he would 
prefer that they were not read by everyone. He would like to 
choose selectively who may read the annotations. 

4. The data structures used to contain the bibliography items are highly 
optimized and 'delicate'. He would like to insure that when an update 
is done, the data structures are correctly manipulated. 

5. From time to time he changes the programs; either to correct errors 
or to add new features. For a period of time after the changes are 
made he would like to allow only a small, sympathetic subset of his 
(growing) user community to use the new versions of his programs. 

6. He suspects that after he has allowed others to use his programs and 
build their own bibliographies they will share some of his concerns, 
e.g., items (1), (3) and (5). In particular, they will npt want him to be 
able to erase or examine their bibliographies, or to force a new 

,version of the programs upon them. 

Several of our researchers' concerns can, of course, be handled by most 
'reasonable' protection systems; others, however, cannot. The most 
straightforward implementation of the bibliography would be to store the 
bibliographic information in a single file*; therefore let us frame the discussion in 
that context. 

Since most file systems only protect read access to an entire file there is no 
way to enforce selective printing, i.e., to distinguish between the accessors who 
may print the entire file and those which may not print the annotations. Similarly, 
undifferentiated read access may permit an unscrupulous user to dump an entire 
bibliography file, determine its structure, and thus compromise the proprietary 
nature of the programs. 

Undifferentiated write access implies analogous problems. Clearly the 
operation of updating the file implies writing on it; in fact it may conceivably 
imply a massive reorganization in order to maintain the 'optimal' data structure. 

The concept of 'ownership', and its corollary privileges, present in many 

•Some, but not all, of the problems raised can be solved by an esoteric multi­
file structure for the bibliography; however, these solutions violate the 
'naturalness' criterion so will not be mentioned. 



THE HYDRA KERNEL 17 

extant systems may imply that the user of this system cannot protect himself 
(unless he takes special, explicit precautions) from examination of his 
bibliographies by the author of the system and/or from unexpected alteration of 
the system. In particular he may not be able to protect himself from alteration in 
ways which penetrate the security of his bibliographies. 

Now let us consider the 'natural' implementation of the bibliography system in 
Hydra and how this implementation overcomes the problems mentioned above. 

Clearly a bibliography is a new type of virtual resource. Therefore we would 
create a new object type; call it BIBLIO. In fact, of course, we will want to use 
existing file mechanisms to represent bibliographies. In all likelihood an instance 
of a bibliography object will have an empty data part and its item part will merely 
consist of a single item which references a file object. 

Even though the representation of a bibliography is a file, file operations are 
not applicable to bibliography ojects; they are applicable only to file objects, we 
can create new operatons (procedures), however, which are applicable to 
bibliography objects, for example: 

In each of these must be an item which references a bibliography object 
and the pi's further specify the nature of the update, print, etc., to be done. 

(Notice that even though P and PWOA are distinct procedures, in the sense of 
being distinct objects, they need not necessarily have distinct code bodies; that is, 
the item part of each of these procedure objects, their prototype LNS's, may 
reference some or all of the same page objects.) 

For simplicity, let us assume that each of the procedures above is uniquely 
associated with a single bit in the 'auxiliary rights' field of an item which 
references a bibliography object; denote these bits by the lower case version of 
the procedure name, i.e., u, p, etc. Thus in order to validly execute 'CALL LK/S,...)' 
it is first necessary that /? be a reference to a bibliography object, and second 
that the V bit of fi be set. 

U/3,pi,...,pn) 
P(/3,Pi,...,pw) 
PWOA(APi,..,Pm> 
E(/3) 

Update 
Print 
Print WithOut Annotations 
Erase 

Figure 2 illustrates (incompletely) a situation involving several 'users' and 



THE HYDRA KERNEL 18 

several bibliographies which might exist at some instant of time. Rectangular 
boxes denote objects. Directed arrows illustrate item references, and the lower 
case letters along these arrows signify which of the auxilliary rights bits are set 
in these items. 

Th§ following kinds of information may be gleaned by inspection of Figure 2: 

1. User 1 may access all of the procedures U, P, PWOA, and E. He may 
also access bibliography objects Bl and B2. He may perform any of 
the operations U, P, PWOA, and E on B l , but he may only perform U 
and PWOA on B2. 

2. User 2 may also access all of the procedures and, in addition, may 
access three bibliography objects: B2, B3, and B4. He may only 
perform PWOA on B2, but may perform U, P, or E on B3 and B4. 

3. User 3 may only access three of the procedures; he does not have a 
reference to E. He may access three bibliography objects - B l , B4, 
and B5 and may, in principle, perform U or P on B l , and U, P, or E on 
B4, and P on B5. Notice, however, that the right, in principle, to 
perform E on B4 is useless to him since he does not have a reference 
to E. 



THE HYDRA KERNEL 

FIGURE 2: BIBLIOGRAPHY EXAMPLE 

PROCEDURES USERS BIBLIOGRAPKES 

LNS «3 



THE HYDRA KERNEL 20 

It should now be clear that each of the protection concerns expressed by our 
friend the researcher is neatly handled by this scheme. For example, 

1. Since the operation of printing is the protected 'right' in the system 
rather than the act of reading, it is possible to distinguish between 
printing the entire bibliography and printing it without annotations. 
Moreover, since the concept of 'read' is not defined with respect to 
bibliographies al alL it is simply impossible for someone to examine 
the representation of a bibliography object and determine its 
structure; the proprietary nature of the system is therefore insured. 

2. Similarly, since the operation of updating a bibliography is distinct 
from that of writing the file which represents it, the internal integrity 
of the data structure is guaranteed (at least if the procedure U works 
correctly). 

We would like to make one more point with respect to the example before 
leaving it. The conventional view with respect to sharing resources is that there 
are precisely two cases: (1) the shared resource is passed to another 'user' - in 
which case the 'rights' which may be passed must be a subset of those of the 
passer, or (2) the shared resource is passed to the 'operating system' - in which 
case the set of 'rights' expands drastically. We reject both of these cases as 
inadequate to serve as the basis of a truly secure system. 

As discussed in the previous section, the rights acquired by a procedure to an 
item passed to it as an actual parameter are obtained from the template in that 
procedure's prototype LNS. These rights may be a subset, superset, or totally 
disjoint from those of the caller. The point is that a procedure is invested with 
those rights, and only those rights, which it needs to do its job. (By way of 
analogy, I am not permitted to repair my telephone. I am permitted, however, to 
invoke an operation, namely a telephone repairman, that can repair it. The 
repairman inherently has the right to repair telephones; he does not, however, 
have access to my particular telephone until I grant him access to it.) 

Systems, and Subsystems 

The previous sections describe how the kernel supports the notion of an 
object, operations on objects, and protection. It is now time to question to what 
extent these mechanisms permit and facilitate the construction of operating 
systems; part of the response is implicit in what has already been described, and 
part is not. 



/ 

THE HYDRA KERNEL 21 

An 'operating system', in the sense of a monolithic entity which provides 
various facilities to the user, is not an appropriate image of a user environment 
as it would exist in the Hydra context. Rather, a user environment consists of a 
collection of resources (objects) of various types and procedures which operate 
on them. The environment in which one user operates may or may not be the 
same as that for another user; it may be totally different, or may partially 
overlap. 

It is entirely possible, for example, that at some point in the evolution of the 
Hydra environment several different 'file systems' will have been devised. Each 
such 'system' will consist of a distinct object type to denote the style of file 
supported by that system, and a collection of operations (procedures) for dealing 
with that style of file. The various styles of files, for example, may correspond to 
different access methods, different queueing strategies for dealing with disk, or 
different security policies. An individual user may use any one of the systems, or 
because the various systems are optimized along distinct dimensions, he may use 
more than one. Similar comments, of course, apply to every type of facility 
provided by an operating system, e.g., command interpreters, synchronization 
mechanisms, etc. 

It should be clear from the discussion above that the Hydra mechanisms 
provide a consistent framework within which the 'virtual machine' visble to the 
individual user may be easily defined and modified. The second goal of an 
operating system, however, is to optimize the utilization of the underlying 
hardware. This optimization involves policy decisions which must be made in 'real 
time'. (Two prime examples of these decisions are those involving scheduling 
processes and processors, and those involving paging operations.) The primary 
goal of this section is the description of how these policy decisions have been 
factored out of the kernel and framed in the object procedure context. 

While the goal of separating mechanism and policy is a laudable one, it is 
impossible to achieve a complete separation in practice. Any mechanism limits the 
set of policies to those which are feasible with respect to that mechanism. 
Therefore the original, goal transmutes into one which attempts, by careful choice 
of the mechanism, to limit the class of feasible policies as little as possible. 
Further, we suspect a universal law which states that flexibiliiy, in this case with 
respect to the class of feasible policies, has a cost. Therefore the practical goal 
is to minimize the constraints on feasible policies subject to the real time 
constraints imposed by the need for a policy decision. The result has been to 
limit both the nature of feasible policies and the times at which they can be 
invoked. 



THE HYDRA KERNEL 22 

Notice, too, that the kernel need not have any explicit knowledge of those 
object types and procedures which implement the user-visible aspects of an 
operating system. The opposite is true for those which implement policy; that is, 
the kernel, and only the kernel, may be aware that a policy decision must be 
made. Thus the kernel must either make the decision itself or know how to 
invoke someone to make it. 

The uniform reaction of a Hydraphile when presented a problem is, "Well, 
create an object which....". That is precisely how we shall introduce policy 
decision features. 

A 'subsystem' object is another object type recognized by the kernel. A 
subsystem object contains references to procedures which implement those policy 
decisions required by the kernel. Each process object contains a reference to 
such a subsystem object; hence, whenever a policy decision relative to a given 
process is required the kernel executes a call on the appropriate policy 
procedure. 

It is worthwhile to make two observations relative to this scheme: first, since 
subsystem objects are associated with a process, it is possible that several 
subsystems are coextant — each making policy decisions appropriate to distinct 
classes of jobs; second, this is another example of the non-hierarchical nature of 
Hydra. 

Rather than detail the various policy/mechanism issues, which are the subject 
of another report [Wu73], we shall simply illustrate the nature of these issues 
with a single example; that of scheduling. 

Scheduling a process for execution involves three separable tasks: (1) 
determining the process's importance relative to others, (2) preparing the process 
for execution, e.g., making sure that the relevant pages are 'in-core', and (3) 
performing the mechanical jobs involved in actually starting the process when the 
appropriate time arrives. The first two of these are performed by policy 
procedures in a subsystem. Only the last is done by the kernel. More 
specifically, the subsystem specifies to the kernel a set of parameters which 
control a simplistic multiplexing algorithm among processes which the subsystem 
has specified are eligible for execution. Short term, 'time critical' decisions are 
made by the kernel on the basis of these parameters. Longer-term decisions are 
made by the subsystem. In particular, one parameter allows the subsystem to 
specify when it should be consulted again; thus, in the limiting case, the 
subsystem may intercede on each scheduling decision. 

Conclusion 



THE HYDRA KERNEL 23 

An operating system, even the kernel of one, is a large undertaking. It 
involves many interrelated decisions. Indeed we believe that the consistency and 
cleanliness of this interrelation is more important to the ultimate utility of the 
system than any of the individual decisions. It is this aspect of the Hydra design 
that we feel is most important. 

Acknowledgments 

It is difficult to give proper credit to the sources of all the ideas presented 
above. Although we have felt free to change terminology, the work of Dennis 
[DvH66], Dijkstra [Dij68b], Hansen [Br70], and especially Lampson [La69] and 
Jones [Jo73] have had a significant impact. The ideas of these individuals will 
clearly show through to those who are familiar with them. The remaining ideas 
and the cement which holds the design together emerged in discussion between 
the authors. 



THE HYDRA KERNEL 24 

References 

[Br70] Brinch-Hansen, P., "The Nucleus of a Multiprogramming System," CACM 13 
(4/70), 238. 

[Dij68a] Dijkstra, E.W., "The Structure of THE Multiprogramming System," CACM 
11,5 (4/68), 341-6. 

[DvH66] Dennis, J. B. and Van Horn, E. C , "Programming Semantics for 
Multiprogrammed Computations," CACM 9,3 (3/66), 143-55. 

[Dij68b] Dijkstra, E. W., "Cooperating Sequential Processes," Programming 
Languages (ed. F. Genuys), Academic Press (1968), 43-112. 

[La69] Lampson, B. W., "Dynamic Protection Structures," Proc. AFIPS Conf. 35 
(FJCC 1969). 

[Jo73] Jones, A. K., Protection Structures, Ph.D. Thesis, Carnegie-Mellon 
University, 1973. 

[Pa72] Parnas, D. L., Response to Detected Errors in Well-Structured Programs, 
Carnegie-Mellon University, Computer Science Department report, 
July, 1-972. 

[Pa71] Parnas, D. L., On the Criteria to be Used in Decomposing Systems into 
Modules, Carnegie-Mellon University, Computer Science Department 
report, August, 1971. 

[Wb72] Wulf, W. A. and Bell, C. G., "C.mmp - A Multi-Mini-Processor," Proc. AFIPS 
EJCC 1312s 765-77. 

[DDH72] Dahl, 0. J., Dijkstra, E. W., and Hoare, CAR., Structured Programming. 
Academic Press, 1972. 

[Wu73] Wulf, W. et al., Policy/Mechanism Separation in the HYDRA System, 
Carnegie-Mellon University, Computer Science Department report, to 
be published. 


