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Abstract

Stereo visual odometry and dense scene reconstruction
depend critically on accurate calibration of the extrinsic
(relative) stereo camera poses. We present an algorithm
for continuous, online stereo extrinsic re-calibration oper-
ating only on sparse stereo correspondences on a per-frame
basis. We obtain the 5 degree of freedom extrinsic pose
for each frame, with a fixed baseline, making it possible to
model time-dependent variations. The initial extrinsic es-
timates are found by minimizing epipolar errors, and are
refined via a Kalman Filter (KF). Observation covariances
are derived from the Crámer-Rao lower bound of the solu-
tion uncertainty. The algorithm operates at frame rate with
unoptimized Matlab code with over 1000 correspondences
per frame. We validate its performance using a variety of
real stereo datasets and simulations.

1. Introduction
Stereo vision is core to many 3D vision methods in-

cluding visual odometry and dense scene reconstruction.
Good calibration, both intrinsic and extrinsic, is essential
to achieving high accuracy as it impacts image rectifica-
tion, stereo correspondence search, and triangulation. In-
trinsic calibration models image formation for each cam-
era (e.g. [3]), while extrinsic calibration models the 6 de-
gree of freedom (DOF) pose between the cameras. For real
systems, extrinsic calibration errors occur more frequently
due to larger exposure to shock, vibration, thermal variation
and cycling. For visual odometry in particular, such errors
lead to biased results. We propose a method to recalibrate
extrinsic parameters online to correct drift or bias. Fig. 1
shows epipolar errors for a range of stereo heads. For 1b
and 1c there is a near constant bias, while 1a drifts possibly
caused by thermal expansion from the lighting assembly.

Online calibration remains an active area of research.
Online intrinsic calibration (auto or self calibration) es-
timates intrinsic parameters using scene point correspon-

dences from multiple views (e.g. [18, 17, 8, 11]). How-
ever, the results are generally less accurate than offline
methods [8] using known relative Euclidean control points
(e.g. [16]). Here, we focus on correcting drifting extrin-
sic calibration. Carrera et al. [2] calibrated multi-camera
extrinsics using monocular visual SLAM maps for each
camera [6], not necessarily with overlapping fields of view.
However, the extrinsic estimates were assumed to be sta-
ble over time and monocular SLAM limits real-time perfor-
mance in large environments. In contrast, continuous meth-
ods output a unique extrinsic pose for each stereo pair (per
time step). In [1], a linear essential matrix estimate is used
to find relative pose, followed by non-linear refinement in-
corporating depth ordering constraints. Some constraints
were placed on the extrinsic pose DOF, and experimental
testing was restricted to small indoor sequences with a sta-
tionary camera.

Dang et al. [5, 4] developed an approach that estimates
the extrinsics using three error metrics incorporated into
an iterative Extended Kalman Filter (EKF). The error met-
rics are derived from bundle adjustment (BA), epipolar con-
straints, and trilinear constraints. Comparisons were made
via scene reconstruction accuracy, and they found that us-
ing epipolar constraints (epipolar reprojection errors) only
to be inferior to using all three metrics. The number of cor-
respondences was limited (< 50), and using more is likely
to significantly impact real-time performance. Interestingly,
there were several advantages to using epipolar errors only.
These include the ability to obtain strictly per-frame esti-
mates without needing temporal correspondences and the
invariance to non-rigid scenes, which is important for oper-
ations in dynamic environments.

In this paper, we contribute a continuous, online, extrin-
sic re-calibration algorithm that operates in real-time using
only sparse stereo correspondences and no temporal con-
straints. The initial extrinsic estimates are obtained by min-
imizing epipolar errors, and a Kalman Filter (KF) is used
to limit over-fitting. The unique extrinsics estimated for
each stereo pair enable temporal drift to be modeled and we
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(a) Pipe dataset: f = 1203pix, 1200× 768pix2 images.
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(b) Outdoor dataset 1: f = 811pix, 640× 480pix2 images.
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(c) Outdoor dataset 2: f = 1781pix, 1024×768pix2 images.

Figure 1: Mean (blue) and ±3σ standard deviation (red)
epipolar errors for sparse correspondences for different
stereo data. The supplied calibration (Pointgrey Bumble-
bee2) was used for rectification in (b).

show that with enough correspondences (e.g. 1000), epipo-
lar errors alone are sufficient for good re-calibration. More-
over, the approach is trivial to extend to multiple frames by
combining correspondences. We validate the approach in
simulation and on real stereo datasets by comparing visual
odometry estimates with and without re-calibration, and re-
construction errors compared to offline calibration with a
known target. We show the limitations of re-calibrating the
baseline length, and suggest methods to partially address
these.

2. Stereo Geometry and Error Metric
2.1. Stereo Pose and Epipolar Constraints

The stereo extrinsics S = [R|t], is composed of a rota-
tion R ∈ SO(3) and translation t ∈ R3. It defines the pro-
jection of a scene point Xl = (X,Y, Z)T in the left camera,
to Xr in the right: Xr = RXl + t.

Our re-calibration algorithm uses image coordinates and
errors in the left and right stereo rectified images. Let ũl ↔
ũr be a set of homogeneous scene point correspondences
in a pair of rectified images, which are related to the scene
points coordinates Xl,Xr by

ũl ' Kl R̃lXl = Kl X̃l (1)

ũr ' Kr R̃rXr = Kr X̃r, (2)

where R̃l, R̃r are rotations applied to each camera, and
Kl,Kr are pinhole projection matrices with zero skew and
equal focal lengths f . For convenience we assume that

Kl = Kr =

 f 0 uo
0 f v0

0 0 1

 . (3)

R̃l and R̃r are selected to produce a rectified extrinsic pose
S̃ = [I3×3 | (−b, 0, 0)T ], where b = ||t|| is the original
baseline, such that X̃r = X̃l + (−b, 0, 0)T (e.g. [12]).

The rectified coordinates are related by

(ũl, ṽl, 1)T = (ũr + d, ṽr, 1)T , d =
bf

Z̃
, (4)

where d is the disparity and Z̃ the depth of a scene point.
The stereo rectified epipolar constraint is simply ṽl = ṽr,
which is independent of the depth and baseline. This
can also be derived from the monocular essential matrix
ũlE ũr = 0 [12].

2.2. Calibration Error Metric

For re-calibration, we decompose each rotation, R̃l and
R̃r, as the product of two independent rotations:

R̃l = ŘTl R
′
l, R̃r = ŘTr R

′
r. (5)

They are the rotations R′l and R′r from the original stereo
extrinsics S, and a rotation correction Řl and Řr. We start
with a set of correspondences u′l ↔ u′r detected in imagery
rectified with R′l and R′r. They are related to the correct
rectified coordinates ũl ↔ ũr, satisfying the epipolar con-
straint by

ũl ' KlŘ
T
l K
−1
l u′l, ũr ' KrŘ

T
r K
−1
r u′r. (6)

For an estimate of Řl and Řr, the epipolar error εi is

εi = f
ŘTl[2]K

−1
l u′li

ŘTl[3]K
−1
l u′li

− f
ŘTr[2]K

−1
r u′ri

ŘTr[3]K
−1
r u′ri

, (7)
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Figure 2: The parameterization of the rotation angles Φ. In
the rectified pose, the cameras principal axes are parallel,
and lie in the plane Π. The rectified coordinates are pro-
jected to a plane orthogonal to Π.

where RTa[b] means row b of matrix RTa . The re-calibration
objective function is the sum of squared epipolar errors ε:

argmin
Řl,Řr

N∑
i=1

ε2i , (8)

giving the maximum likelihood estimate of Řl and Řr, from
which the new Ŝ stereo extrinsics can be recovered:

Ŝ = 〈Q̂r, Q̂∗l 〉, (9)

Q̂l =
[(
ŘTl R

′
l

)T |0]→ Q̂∗l =
[
ŘTl R

′
l|0
]
, (10)

Q̂r =
[(
ŘTr R

′
r

)T | (ŘTr R′r)T (−b, 0, 0)T
]
, (11)

where 〈Q̂r, Q̂∗l 〉 is the projection Q̂∗l followed by Q̂r.
As we can only use epipolar constraints, there is no

means for correcting the stereo baseline estimate b. We
introduce a method to partially address this in section 4.3.
We restrict the optimized extrinsic pose by 1 DOF as a re-
sult and instead optimize the 5 DOF vector of Euler angles
Φ = [αl, βl, αr, βr, γ]

T by minimizing (8). Referring to
Fig. 2, the rotations Řl and Řr are

Řl = RX(γ/2)RZ(βl)RY (αl) (12)

Řr = RX(−γ/2)RZ(βr)RY (αr), (13)

whereRA is the right-handed rotation about the axisA. Eu-
ler angles are a suitable parameterization as the initial ex-
trinsic estimate is assumed to be near the solution, and the
expected changes in angles are small.

3. Solution Covariance and Over Fitting
In practice, the correspondences u′l ↔ u′r will be cor-

rupted with noise and the ability to accurately estimate Φ
from these is dependent on many factors. These include: the
focal lengths, baseline, number of correspondences, spatial
distribution of correspondences, and the depth of the scene
points. Small rotation angles Φ make over-fitting a concern.

Figure 3: Ground truth simulated change in angles Φ′ (black
line), and the initial optimized estimates Φ (red dots).

To test this, we simulated a time dependent change in the
extrinsic pose of a b = 150mm baseline, 640 × 480 reso-
lution (f = 1000pix) stereo camera. For each stereo pair,
1000 random correspondences were generated, and uncor-
related Gaussian noise (σ = 0.5pix) added. The disparity
values ranged between 1 and 25pix, or equivalently depths
Z between 3 and 150m. Fig. 3 shows the simulated angular
changes (black), and the noisy estimates of Φ (red).

3.1. Solution Covariance

Assuming that Φ is an unbiased estimate of the
solution Φ′, with expected error covariance C =
E
[
(Φ− Φ′) (Φ− Φ′)T

]
, the Cramér-Rao lower bound C is

greater than or equal to the inverse of the Fisher information
matrix F , which is the score variance at the solution [15]:

C = E
[
(Φ− Φ′) (Φ− Φ′)T

]
≥ F−1 (14)

F = E

[(
∂ ln p(ε|Φ)

∂Φ

)T (
∂ ln p(ε|Φ)

∂Φ

)]
. (15)

Where p(ε|Φ) is the conditional error probability. If the
measurement errors of the imaged points are zero-mean
Gaussian, then we can assume that ε ∼ N (0, σ) at the solu-
tion, and (15) can be written as

F =
1

σ2

n∑
i=1

(
∂εi
∂Φ

)T (
∂εi
∂Φ

)
. (16)

The summation in (16) is taken over all n correspondences,
and the Jacobian ∂εi

∂Φ is the change in error with respect to
the change in parameters Φ at the solution:

Ji =
[

∂εi
∂αl

∂εi
∂βl

∂εi
∂αr

∂εi
∂βl

∂εi
∂γ

]
, (17)

which, for the simple case where Φ = 0T is

Ji|0T =
[
−xli

yli
f −xli

xri
yri
f xri

f2+y2li
+y2ri

2f

]
.

(18)



C αl βl αr βr γ

αl 0.040 0.031 -0.010 0.030 0.019
βl 0.031 3.142 0.070 3.127 1.969
αr -0.010 0.070 0.041 0.070 0.044
βr 0.030 3.127 0.070 3.117 1.961
γ 0.019 1.969 0.044 1.961 1.235

(a) Pipe dataset (see Fig. 1a). All scene points are within
300mm of the camera. det(C) = 8.452× 10−42.

C αl βl αr βr γ

αl 178.414 2.562 178.884 2.737 -0.013
βl 2.562 0.967 2.710 0.979 0.007
αr 178.884 2.710 180.958 2.979 -0.013
βr 2.737 0.979 2.979 1.002 0.007
γ -0.013 0.007 -0.013 0.007 0.001

(b) Outdoor dataset 1 (see Fig. 1b). Many scene points are > 10m
from the camera. det(C) = 4.602× 10−37.

Table 1: Covariance matrices for the correspondences in (a)
Fig. 1a and (b) Fig. 1b. The units are deg2 /pix2, and all
values have been scale by 1.0× 103 for display purposes.

From (6), (xl, yl)
T = (ũl − u0, ṽl − v0)T and (xr, yr)

T =
(ũr−u0, ṽr−v0)T . Due to its complexity we omit here the
full Jacobian. For most perspective cameras with average
fields of view the component ∂ε

∂γ dominates the magnitude
of J , suggesting that γ will be the most reliable estimate.

Table 1 shows the covariance matrices for the sets of cor-
respondences in Fig. 1a and Fig. 1b. The variances of the
angles (leading diagonal) differ significantly in the exam-
ples, and although the number of correspondences used was
similar, the determinant of C for the pipe example is several
orders of magnitude smaller than the outdoor 1 example.
For the outdoor 1 example, the majority of the scene points
are distant, and there is a large covariance between the α an-
gles (αl and αr, highlighted in blue), as well as the β angles
(βl and βr, highlighted in red)1. This shows that it is pri-
marily the relative angles δα = αl − αr and δβ = βl − βr
being estimated (see Fig. 5). For example, if points at an
infinite distance are observed in a perfectly rectified stereo
pair, such that u′l = u′r, the epipolar errors

∑
ε2i will be

zero for any rotations where βl = βr (δβ = 0). In effect
this is attempting to estimate a small translation using points
at infinity (Fig. 4). It is only when βl 6= βr that

∑
ε2i > 0.

4. Kalman Filter Re-Calibration

Given the noisy estimates Φ of the extrinsic pose ob-
tained from the non-linear minimization of the epipolar er-
rors, we use a KF [13] to produce a smoothed estimate Φ̂.
We use a stationary process model so that we have at time k
Φ̂k = Φ̂k−1, although more complex models could be used.

1For any point at infinity, u′l = u′r , so ∂ε
∂αl

= ∂ε
∂αr

and ∂ε
∂βl

= ∂ε
∂βr

.

Figure 4: For a point at infinity, only relative angles can be
estimated, for example δβ = βl−βr. Rotating the cameras
by the same angle βl = βr (δb = 0) is approximately equiv-
alent to adding a small translation change δt, and estimating
small translations with distal points is problematic.

The lower bound Ck evaluated at time k is used as the mea-
surement noise covariance. The process noise covarianceQ
is set to

Q =
( π

180

)2
(

τ

60× fps

)2

Diag(1, 1, 1, 1, 0.25), (19)

where fps is frames per second, and τ is the selected angu-
lar rate of the process noise with units of degrees per minute.

4.1. Update Equations

The time update predictions for the camera state Φ̂−k , er-
ror covariance P−k , and Kalman gain Kk are

Φ̂−k = Φ̂k−1 (20)

P−k = Pk−1 +Q (21)

Kk = P−k
(
P−k + Ck

)−1
, (22)

from which the updated estimate of the camera state Φ̂k and
error covariance Pk are evaluated as

Φ̂k = Φ̂−k +Kk
(

Φ− Φ̂−k

)
(23)

Pk = (I5×5 −Kk)P−k . (24)

4.2. Initializing the State Covariance

We estimate the initial state covariance Pk=0 by gener-
ating 50 perfectly rectified frames of checkerboard scene
points (120 points per frame). Random poses of the cam-
eras with respect to the checkerboard target are simulated.
Gaussian noise is then added to each image coordinate with
σ = 0.25pix. The reprojection errors are defined as a func-
tion of the Euler angles (6) — the y error component is
(7). The initial estimate Pk=0 is calculated from the lower
bound of the solution uncertainty.

Figure 5 shows the KF results Φ̂ obtained from the orig-
inal optimized estimates Φ in the example in Fig. 3 using
the process noise rate τ = 1e−3. It is clear from Fig. 5 that
the KF estimates of the individual angles αl, αr, βl, βr do
not accurately estimate the simulated angles. However, the
differential angles δα = αl − αr and δβ = βl − βr shown
in the same figure are close approximations of the simulated
differential angles. Note that γ is also a differential angle,
and its filter estimate is very close to the simulated values.
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Figure 5: Ground truth angles Φ (black) and KF estimates Φ̂
(red) – original estimates Φ shown in Fig. 3. The differential
angles δα = αl − αr, δβ = βl − βr are also shown.

4.3. Baseline Estimation

The true baseline distance cannot be measured from
stereo correspondences, however, it may be estimated using
additional information. Examples include inertial or wheel
odometry, fixed reference fiduciary markers, or structured
light measurement observable in both images. Here, we
used the following per-frame method to obtain the results in
section 5. We assume that triangulated distance to a scene
point Xi should be the same using both the original and re-
calibrated extrinsics. We denote these li and l′i, respectively.
Since distances are proportional to the triangulated depths
(see 4), we estimate the new baseline b̂ as

b̂ =
b

n

n∑
i=1

li
l′i
. (25)

The summation is only taken over the nearest n = 5 stereo
correspondences each frame as the nearest points are the
most suitable for resolving translation magnitudes.

5. Experiments and Results
To evaluate the approach, we present a range of experi-

mental online re-calibration results including visual odom-
etry for the datasets in Fig. 1 (see table 2), and scene recon-
struction using the dataset described in Sect. 5.

For all datasets, Harris corners [10] were detected in
image pairs rectified using the original extrinsics. Sparse
stereo correspondences were found by thresholding the co-
sine similarity between SIFT descriptors [14] for each fea-
ture. Although sub-pixel accuracy Harris corners were
found, Zero-Normalized Cross Correlation (ZNCC) was
used to refine the correspondences and improve accuracy.

Pipe Outoor 1 Outdoor 2
Camera Assembled Commercial Assembled

Resolution 1202x768 640x480 1033x768
#images 971 8278 7567

fps 7.5 15 7.5
f (pix) 1203 811 1781
b (mm) 156 120 342
# stereo 1236 947 885

Length (m) 7.1 5477 6247

Table 2: Summary of the visual odometry datasets (see also
Fig. 1). The notation # stereo is the mean number of stereo
correspondences found per frame. The camera parameters
are given for the stereo rectified images.

Importantly, we constrain the right stereo feature to an
epipolar box and not a line.

For the visual odometry results, temporal correspon-
dences between adjacent stereo pairs were found by thresh-
olding the ambiguity ratio [14] between SIFT descrip-
tors. Visual odometry estimates were computed using
both the original and the re-calibrated stereo extrinsic pose.
The 6 DOF change in pose Q between the left camera
frames was estimated using Perspective-n-Points (PnP) and
RANSAC [7], followed by non-linear minimization of the
image reprojection errors. The KF process noise was set to
τ = 0.001 for each dataset, and Pk=0 estimated using the
method in Sect. 4.2.

Pipe Dataset The stereo camera, original epipolar errors,
and sample rectified imagery for the pipe dataset are shown
in Fig.1a. As described in [9], the camera observed the up-
per surface of a 400mm diameter steel pipe as it moved
forwards and then in reverse through the pipe. Light-
ing via nine LEDs was mounted to the camera housing,
which raised the temperature of the camera housing from
25 − 30oC ambient at the start to 27 − 38oC at the end.
We attribute the time dependent change in epipolar errors to
thermal expansion.

The KF estimates of the camera rotation angles, visual
odometry estimates, and 3D point clouds with original and
re-calibration extrinsics are shown in Fig.6a, 6b, and 6c.
Although GPS ground truth is unavailable, all scene points
belong to the same curved surface, so the reconstructions in
both directions should align. There is a large misalignment
using the original extrinsic calibration, which is improved
significantly using the online re-calibration estimates.

Outdoor Dataset (Camera 1) The first outdoor dataset
(Fig.1b) includes imagery from a short baseline Pointgrey
Bumblebee2 stereo camera. The rectified imagery was cre-
ated using the supplied calibration data. The KF estimates
of the extrinsics are provided in Fig.7a, and the compari-
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(a) KF estimates of the rotations angles.

(b) VO result with pipe axis in X direction: original (top) and
re-calibrated (bottom).

(c) VO result at the start/end: original (left) and re-calibrated (right).
The points all belong to the same surface.

Figure 6: Results for the pipe dataset. The black line near
the surface points in (c) connects the same ground truth
marker, reconstructed at the start and end of the dataset.
The Euclidean errors in the reconstructed coordinate are:
100.1mm for original calibration, 15.1mm for re-calibrated.

son of the visual odometry estimates using the original and
re-calibrated extrinsic pose are shown in Fig.7b. The 5Hz
GPS (non-RTK) measurements collected are included as
ground truth. The visual odometry position estimates were
linearly interpolated at the time stamps for each of the 1671
GPS readings2, and then aligned with the GPS by minimiz-
ing the sum of squared distances. The average absolute dis-
tance errors were: 0.781m using the original calibration,
and 0.485m using online re-calibration.

2The GPS z-component was set to zero as the 3D solution was unreli-
able – the operating environment was approximately planar.
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(a) KF estimates of the rotations angles.

(b) VO (red), and the 5Hz GPS (blue). Left column is the original
calibration, and right column the KF re-calibration.

Figure 7: Results for 5.48km outdoor dataset 1 (commercial
stereo camera). There are a total of 4 anti-clockwise loops.

Outdoor Dataset (Camera 2) The second outdoor
dataset (see Fig.1c) uses a custom 342mm baseline stereo
camera. Intrinsic and extrinsic parameters were calibrated
offline and then we manually flexed the camera to alter the
extrinsics. The KF estimates of the angles and visual odom-
etry results are provided in Fig.8. GPS ( 3045 points at
5Hz) formed the ground truth using the same techniques
described previously. The absolute average distance errors
were: 1.632m using the original calibration, and 0.700m
using online re-calibration. As was the case with the first
outdoor dataset, re-calibration reduced the rotational drift.

Indoor Scene Fig. 9a shows the stereo camera and a sam-
ple image from the left camera used for the indoor con-
trolled test. The stereo head uses the same cameras as in the
previous experiment, but with a baseline of 220mm and a
configurable right camera pose. We collected three datasets



(a) KF estimates of the rotations angles.

(b) VO (red), and the 5Hz GPS (blue). Left column is the origi-
nal calibration, and right column the KF re-calibration.

Figure 8: Results for 6.25km outdoor dataset 2.

(1, 2 and 3) observing the same indoor scene, each with a
different right camera pose. Ground truth estimates of the
extrinsic pose for each set were obtained using a checker-
board target. Dataset 1 was chosen as the reference calibra-
tion. The stereo correspondences for each set were found
in rectified imagery using this reference calibration. The
online KF re-calibration was used to estimate the changes
from the reference calibration, as shown in Fig. 9b. The
final KF results are compared to the ground truth in table 3.

As expected, the performance degrades with large
changes from the reference calibration. Although the errors
for αl and αr appear large for set 1, the resulting change in
the stereo disparity and scene reconstruction remained rel-
atively small (see table 3). The standard deviation of the
disparity (pix) is similar to the checkerboard calibration re-
projection values of (σx, σy) = (0.231, 0.212)pix which is
itself only an estimate of the true extrinsic pose.

To better visualize the performance of the re-calibration,
the overhead views of the scene reconstruction for each

(a) The stereo camera and sample image.
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(b) The raw online calibration angle estimates (red points) and KF estimates
(solid lines). Each row shows the differential angle estimates for each of the
3 datasets (changing right camera pose).
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(c) The top view of the scene reconstructions for set 1 (blue), set 2 (red) and
set 3 (green) using: original calibration (top row); checkerboard calibration
(middle row); online KF re-calibration (bottom row).

Figure 9: Hardware and results for the indoor dataset.

set are shown in Fig. 9c: the first row uses the reference
calibration for each set; the second row uses the checker-
board calibration; and the third row uses the online re-
calibration. These reconstructions were produced using the
exact same stereo correspondences detected in a single im-
age pair from each set, and are all in the left camera co-
ordinate frame. The results using online re-calibration are
significantly more consistent than those using the reference



calib1 opt1 calib2 opt2 calib3 opt3
αl 0.00 -0.294 -0.362 -0.546 -1.137 0.829
αr 0.00 -0.328 0.456 0.216 1.613 3.842
δα 0.00 0.033 -0.818 -0.762 -2.750 -3.014
βl 0.00 0.051 -0.127 -0.108 -0.367 -2.481
βr 0.00 0.050 0.588 0.600 1.369 -0.940
δβ 0.00 0.001 -0.716 -0.708 -1.736 -1.541
γ 0.00 0.002 -0.565 -0.566 -1.123 -1.179

Table 3: The changes in angles from the reference calibra-
tion using: offline checkerboard calibration (calib); online
re-calibration (opt). All values have units of degrees. The
subscripts calibn and optn refer to the image set.

mean std. dev.
Euclidean Error (mm) 24.80 22.67
Euclidear Error (%) 0.436 0.329

Disparity Difference (pix) 1.076 0.212
Disparity Difference (%) 1.281 0.502

Table 4: Statistics for the Euclidean reconstruction and dis-
parity differences between the checkerboard calibration and
online re-calibration for set 1.

calibration for each set. Observe that there are some in-
consistencies in the reconstructions for each set using the
checkerboard calibration. Again, it too is only an estimate
of the true extrinsic pose.

6. Conclusions
We presented an algorithm for online continuous stereo

extrinsic re-calibration that estimates a separate extrinsic
pose for each image pair using sparse stereo correspon-
dences. An initial 5 DOF extrinsic pose estimate (relative
camera orientations/fixed baseline) is found by minimiz-
ing stereo epipolar errors, and then refined using a Kalman
Filter (KF). The KF measurement covariance is the lower
bound of the per-frame solution uncertainty, which is de-
pendent on the number and distribution of the scene point
correspondences, as well as the camera focal length and
stereo baseline. If only a small number of stereo correspon-
dences can be found, they simply can be combined over
multiple frames before estimating the extrinsic pose as no
temporal constraints are used. Our results for visual odom-
etry using a range of real datasets in different environments
show that accuracy is improved using our technique com-
pared to the original extrinsic calibration. Our future work
will explore improved methods for estimating the change in
baseline length.
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