Carnegie Mellon University
Browse

File(s) stored somewhere else

Please note: Linked content is NOT stored on Carnegie Mellon University and we can't guarantee its availability, quality, security or accept any liability.

Porous Media Modeling of Microchannel Cooled Electronic Chips with Nonuniform Heating

journal contribution
posted on 2015-10-01, 00:00 authored by Yubai Li, Shi-Chune Yao

Microchannels are used for the cooling of electronic chips. However, the three-dimensional computational fluid dynamics modeling of the large number of channels in a full chip requires a huge number of meshes and computation time. Although porous media modeling of microchannels can significantly reduce the effort of simulation, most previous porous media models are based upon the assumption that the surface heat flux or temperature is uniform on the chip. In reality, the heat flux on the chip is usually highly nonuniform. In the present study, the porous media model considers the simultaneously developing entrance effect at the microchannel inlet and the thermally developing entrance effect due to the severe heat flux variation along the channel. Duhamel’s integral is used to provide the Nusselt number distribution corresponding to the nonuniform heat flux distribution along the channel. The computing cost of this modeling method is only about 1% of the three-dimensional conjugate simulation. This porous media thermal modeling method is applied to model two full-scale electronic chips with realistic power distributions on the surfaces, and temperature maps are generated. The porous media thermal modeling offered by this study is an accurate and efficient alternative for modeling the electronic chips cooled by microchannels.

History

Date

2015-10-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC