Carnegie Mellon University
Browse
file.pdf (1.86 MB)

Position Estimation by Registration to Planetary Terrain

Download (1.86 MB)
journal contribution
posted on 2012-09-01, 00:00 authored by Aashish Sheshadri, Kevin Peterson, Heather JonesHeather Jones, William Whittaker

LIDAR-only and camera-only approaches to global localization in planetary environments have relied heavily on availability of elevation data. The low-resolution nature of available DEMs limits the accuracy of these methods. Availability of new high-resolution planetary imagery motivates the rover localization method presented here. The method correlates terrain appearance with orthographic imagery. A rover generates a colorized 3D model of the local terrain using a panorama of camera and LIDAR data. This model is orthographically projected onto the ground plane to create a template image. The template is then correlated with available satellite imagery to determine rover location. No prior elevation data is necessary. Experiments in simulation demonstrate 2m accuracy. This method is robust to 30° differences in lighting angle between satellite and rover imagery.

History

Date

2012-09-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC