Carnegie Mellon University
Browse
file.pdf (354.23 kB)

Statistical Model Checking for Markov Decision Processes

Download (354.23 kB)
journal contribution
posted on 1983-01-01, 00:00 authored by David Henriques, Joao G. Martins, Paolo Zuliani, Andre Platzer, Edmund M Clarke

Statistical Model Checking (SMC) is a computationally very efficient verification technique based on selective system sampling. One well identified shortcoming of SMC is that, unlike probabilistic model checking, it cannot be applied to systems featuring nondeterminism, such as Markov Decision Processes (MDP). We address this limitation by developing an algorithm that resolves nondeterminism probabilistically, and then uses multiple rounds of sampling and Reinforcement Learning to provably improve resolutions of nondeterminism with respect to satisfying a Bounded Linear Temporal Logic (BLTL) property. Our algorithm thus reduces an MDP to a fully probabilistic Markov chain on which SMC may be applied to give an approximate solution to the problem of checking the probabilistic BLTL property. We integrate our algorithm in a parallelised modification of the PRISM simulation framework. Extensive validation with both new and PRISM benchmarks demonstrates that the approach scales very well in scenarios where symbolic algorithms fail to do so.

History

Publisher Statement

All Rights Reserved

Date

1983-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC