Carnegie Mellon University
Browse
file.pdf (3.52 MB)

Synthesis of complex thermally coupled distillation systems including divided wall columns

Download (3.52 MB)
journal contribution
posted on 2012-09-01, 00:00 authored by Juan Caballero, Ignacio E. Grossmann

The design of thermally coupled distillation sequences explicitly including the possibility of divided wall columns (DWC) is described. A DWC with a single wall can be considered thermodynamically equivalent to a fully thermally coupled (FTC) subsystem formed by three separation tasks (a Petlyuk configuration in the case of three-component mixtures). It is shown how to systematically identify all the sequences of separation tasks that can produce configurations that include at least a DWC. Feasible sequences that explicitly include DWCs are enforced through a set of logical relationships in terms of Boolean variables. These logical relationships include as feasible alternatives from conventional columns (each column must have a condenser and a reboiler) to FTC systems (only one reboiler and one condenser in the entire system). A comprehensive disjunctive programming formulation for finding the optimal solution is presented. The model is based on the Fenske, Underwood Gilliland equations. However, the disjunctive formulation allows easily the use of any other shortcut, aggregated or even rigorous model without modifying much the structure of the model. Two illustrative examples illustrate the procedure.

History

Publisher Statement

This is the accepted version of the article which has been published in final form at http://dx.doi.org/10.1002/aic.13912

Date

2012-09-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC