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ABSTRACT

In this paper the concept of vector valued, absolutely continuous

functions on an idempotent semigroup is studied. For F a function

of bounded variation on the semigroup S of semicharacters with

values of F in the Banach space X, let A ~ AC(S,X,F) be all those

functions of bounded variation which are absolutely continuous with

respect to F. A representation theorem is obtained for linear

transformations from the space A to a Banach space which are continuous

in the BV-nornu A characterization is also obtained for the collection

of functions of A which are Lipschitz with respect to F. With

regards to the new integral being utilized it is shown that all

absolutely continuous functions are integrable.
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VECTOR VALUED ABSOLUTELY CONTINUOUS FUNCTIONS

ON IDEMPOTENT SEMIGROUPS

by

Richard A. Alo, Andre de Korvin, and Richard J. Easton

Introduction. Absolutely continuous functions have been

extensively studied in the literature. For example in [5] the

dual space of the space of absolutely continuous functions is

characterized. In [7], T. pildebrandt gives a representation theorem

for the linear functionals on BV[O,1] which are continuous in the

weak topology. In [6] a representation theorem for linear functionals

continuous in the variation norm on BV[O,1] is given. This repre-

sentation is in terms of a so called v-integral. The techniques

of that paper, however, make strong use of the order on [0,1]. In [8]

absolutely continuous functions and functions of bounded variation

on idempotent semigroups are defined and these functions are identified

with a certain class of finitely additive set functions.

In [1], the identification in [8] is used to obtain a representation

theorem. A characterization of the so called Lipschitz functions in

the setting of [8] is also obtained by the authors. The techniques

of [1] depend on a result of Darst [2] which states that if u and v

are two finitely additive real valued set functions with v < < u,

then v is the limit in the variation norm of finitely additve set

functions u defined by u (A) = I s du, where s is a simplen n J _ n n



function. This result does not in general hold true when u and v

are vector valued.

In this paper we study the concept of vector valued, absolutely

continuous functions on an idempotent semigroup. We obtain a repre-

sentation theorem for linear transformations from the space AC(S,X,F)

to Y which are continuous in the BV-norm. A characterization

is also obtained for the collection of functions of AC(S,X,F) which

are Lipschitz with respect to F. It is also shown that this new

integral being utilized has a "wide enough" class of integrable

functions. In fact all polygonal functions are integrable (see

Lemma 6) and even more so all absolutely continuous functions

(Theorem 2) are integrable.

1. Notations and Definitions

Let A be an abelian idempotent semigroup, and let S be a

semigroup of semicharacters on A containing the identity. Recall

that a semi-character on A is a non-zero bounded, complex valued

function on A which is a semigroup homomorphism. Since A is

idempotent it is clear that every f in S can be viewed as a

characteristic function on A. The notations used here will be

consistent with the ones used in [1] and [8]. We recall some of

these notations.

For f in S, Af = {a€A:f(a) = 1} and Jf * {aeA:f(a) = 0).

Let T be the set of all n-tuples consisting of 0 and 1. Let Q

be a finite subset of S, that is Qn= { f.., f2,. . . , f }, and let <j€T .

If o('i) denotes the i — component of a, for Q = Q let



B(Q,O) = ( n A . n n J- ).
l i o(i)=O ri

Any set of this form will be called a set of B-type. Let F

be any function from S to the reals. Define

n

L(Q,o)F = S m(o,t)F( w f.
T€T i=l

n

where m denotes the Mobius function for T R (see [9]). The
function F is said to be of bounded variation if

sup £ |L(Q,O)F| < CD , where the supremum is taken over all par-
a e Tn

titions of A into sets B(Q,a) as a ranges over T . The

collection of all real valued functions of bounded variation on S

will be denoted by BV(S). Consider FeBV(S). Then by AC(S,F) ,

we mean all functions G€BV(S) such that for each £ > 0, there

exists a 6 > 0 such that for every finite set Q = Q of S and any

subset H of T 9
n

S |L(Q,a)G| <€ if 2 |L(Q,a)F| < 6.

From now on F will be assumed to be positive definite9 i.e.

L(Q,a)F ;> 0 for all such Q and a.

Let X be a Banach space. Then by the space BV(S9X) we

mean all functions from S to X which are of bounded variation

in the above sense where absolute value is replaced by the norm in

For GeBV(S,X), H G | L V will denote sup S ||L(Q,Q) GilV.



Definition. Let £ be any field of subsets of some set and let u

and v be finitely additive set functions defined on £ where u

is scalar valued and v is X valued. We say that v is

absolutely continuous with respect tp 1L and write v < < u

if v is the limit in the variation norm,of X valued set functions

n
of the form £ v.*x., where x.€X, and each v. is a scalar valued,

i=l 1 x * X

finitely additive, set function on £, which is £ - 6 absolutely

continuous with respect to u.

Remark. In the case that X is the reals the above definition

reduces to the usual one.

Definition. Consider GGBV(S,X) and F as above. Tfhe function G

is called absolutely continuous with respect to JF if G is the

n
limit in ll#M_.y of X valued functions of the form £ G.«x.

BV i = 1 1 i

where x.eX and each G. is a scalar valued function defined on S
I i

which is absolutely continuous with respect to F as in [8] . We

denote this space by AC(S,F,X) .

2. Results. Let u denote a scalar valued finitely additive set

function defined on £ and let m be an X-valued finitely additive

set function defined on £.

Lemma 1. m < < u if and only if m .is the limit in the variation

norm of finitely additive X-valued set functions defined qr^ £

whose range is finite dimensional. and which are £ - 6 absolutely



continuous with respect to u.

Proof: Suppose that m is the limit in the variation norm of

finitely additive set functions mi(where the ranges are finite

dimensional) which are e-6 absolutely continuous with respect

to u. It follows that each m i can be written as

n.

m. = S m. .• x. .

where each m. . is a finitely additive, real valued, set function

defined on £ each of which are € - 6 absolutely continuous with

respect to u, and where the x.. are linearly independent.

Hence m < < u. The converse is clear.

Lemma 2. m < < u if and Qflly if. m is. tTie limit in the variation

norm of X-^valued set functions which are represented by integrals

of X-valued simple fMJiGfcijQiis with ye^pgqt to u.

Proof: Prom lemma 1, m < < u if and only if m is the limit in the

variation norm of set functions of the form

Z ITU- Xj,

where each m. is real valued and £ - 6 absolutely continuous with

respect to u. From a result due to Darst [I], each m. is the

limit in the variation norm of set functions of the form

where each s. v is a real valued simple function.



It is clear then that m will be approximated in the variation

norm by

Es. v» x.du.
1 , Jv. 1

From now on £ will denote the field generated by all .Jf

as f ranges over S..

Let m be a finitely additve X-valued set function defined on :

To m we associate an X-valued function defined on S, denoted by ft,

which is defined by

m(f) = j fdm = m(Af) .

Let BV(Z,X) denote the collection of all finitely additive X-valued

set functions of bounded variation. Then BV(2,X) is a Banach space

under the variation norm [5].

Theorem 1. The map m—^m is a linear isometrv from BV(£,X) onto

BV(s,x) . Moreover m < < u if. and fltnly AJL m < < u £LX±£L£QX each

x in X, u»x = u^x.

Proof: Clearly the map is linear, we now show that it is onto.

Consider GeBV(S,X), then G can be extended to the linear span of S

by the eguation

since S is a linearly independent set (see lemma 1.4 [7] ) . Since S

is a semigroup, for each EeG, it follows that x« is an element
hi

of the linear span of S. Thus we define a set function u by

eguation



u (E) = G (x_.) .

I t follows that uG i s a f ini te ly additive X-valued set function

defined on S. Furthermore for each f€S,

ft (f) „ u (Af) - 6 ( f ) .

We now show that the map i s norm preserving. We have

\\m\\ = sup s HmtB^H

where the B . ? s are s e t s of B-type and form a p a r t i t i o n of A,

Now

11 mil ~ s u p S Urn(B.) 11

= sup Z

Note that we can now obtain the norm of G directly from the

equation

M B V " SUP S ̂ G (XA) ̂ *

Now suppose that G < < F, Then G is the limit in the variation

norm of

G~ ^ Sh^ .• x^ .
n . n, i n« I

i

where each h^ . is real valued and Ti . < < F. Also each
n^ i n 5I

h n ^ = .u ^ where
 u

n i < <
 U
F* Hence if we let

it follows that u converges to u^ in the variation norm once
n G
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we have shown that for each real valued finitely additive set

function u and each xeX

since then we have that

This follows since

u»x(f) = u« x(A )

= u(Af). x

= u(f)* x.

Lemma 3, The space AC(S,X,F) jLs, a, Banach space.

Proof; Since BV(S,X) is A Banach space,from theorem 1 it is

sufficient to show that AC(S,X,F) is closed in BV(S,X)o Consider

G€BV(S,X) and G eAC(S,X,F) where [G } converges to G in the

BV-norm. Since each G is the limit in the BV-norm of functions
n

of the form

EG^ .• x .
i n,i n,i

where each G . < < F it follows that GeAC(S,F,X).n, l

Definition, Let {A^A^... ,An) be a partition of A by sets

in S and let

Define

n
= S XAi



Vs(E)

for each E in s, then clearly v
s < <

 U
F* 'nie function

P eAC(S,F,X) which corresponds to V from theorem 1 will be
s s

called a polygonal function.

Lemma 4. The collection of polygonal functions is dense in

AC(S,F,X) .

Proof; Consider G€AC(S,F,X) and £ > 0. There exists an

n
H = S h.«x., where h.€AC(S,F) and

x x x

Furthermore each h- = u., where u. < < u__. From the result of
x 1 1 r

Darst [1], there exist simple functions s. such that

IK - J s i d u A < £

Let

•f* "•"• V Q ^T

and

Vt(E) = J tdup,

then if P. is the polygonal function which corresponds to

we have

- pt||
B V

Uj,. x± - \ S S i x ^
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which establishes the lemma.

Now to each G in AC(S,X,F) we associate a special polygonal

function which, in the case that S is the set of characteristic

functions on half open intervals, coincides with the usual idea of

polygonal function, see [3]. Let G€AC(S,X,F) , and let Y be a

finite subset of S. Let

u (B(Y,a))
W = £Y,G * U (B(Y,O)) * *B(Y,o)*

\J t X J.

n

Since ti (B(Y,a)) = 0 implies u (B(Y,a)) = 0, we define the ratio
to be zero in this case. Let

VY,G * I WY,G dV

then since V < < u , we denote the corresponding polygonal function

Lemma 5. The collection Q£ all pG is dense in AC(S,X,F) in

the BV-norm. In fact for £ > 0> there exists ̂  finite subset YQ

of S such that if Y D y , then

llG - pGYH < £.

Proof: Let £ > 0, then there exists an X-valued simple function s

such that

2 '

since uQ < < up. If

B(Z,o)
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then for each B(Z,o)

V (B(Z,a)) = f sdu
s JB(Z,a) F

Thus

*a'u,,(B(z,o))-VB<z»''>>
F

Similarily, if Z1 3 Z, we have

S ~ up(B(Z',o)) '

which we shall write as

Vs(B(Z',o))

up(B(Z',o)) '

Now

3" ""F

V (B(Z' ,o) ) - u

r
- u

Hence the result follows from the triangular inequality and theorem 1«

We will denote the space of all bounded linear maps from a

Banach space X to a Banach space Y by L(X>Y) •

Definition, Let K be a function defined on all sets of B-type with
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values in L(X,Y) • We say that K is convex relative to £, if

whenever { B ( Z ! , T ) } , TeT m is a partition of B(Z,a) , then

K(B(Z,a)) = SA TK(B(Z' , T ) )
T

where
up(B(Z',r))

\ = up(B(Z,o)) •

The set function K will be called bounded if K is bounded in the

L(X,Y) norm over all sets of B-type. By \\K\\, we will mean the

least upper bound of the bounds for K,

Definition. For G:S—±X and K convex, by the v- integral of G

with respect to K, we mean the limit, if it exists, of

EK(B(Z,o))L(Z,a)G,

a

where the limit is taken over the net of all finite subsets of S.

We denote the integral when it exists by

v j GdK.

Lemma 6. All polygonal functions are v-integral with respect to

every convex and bounded K. In fact

v J pgdK = SK(B(Z,a))L(Z,a)ps

for all Z o Z , Z Q some finite subset of S.

Proof; Suppose

s = SI
a
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then

V (B(Z,a)) = u (B(Z,a))*x
S r O

for all Z z> Z . So

L(Z,O)pe = u (B(Z,0))tx .

Consider Z c Z c Z! > then

L ( Z S T ) P S = U F(B(Z',T))« X T

where x = x if B(Z»,T) C B ( Z , O ) . By convexity
T G

K(B(Z0,a)) = E^aB(Z
!,0)

where

uT?(B(Z',a))

Thus

a up(B(Zo,o)) *

rK(B(Z-,a))L(Z.,o)pe = SK(B(Z',T))L(Z',T)P .
a T

Theorem 2, Let T be a linear operator from the space AC(S,X,F)

into Y which is continuous in the BV-norm. iTien there exists JL

unicfue convex and bounded set function K, with values in L(X,Y) ,

such that every G in. AC(S,X,F) is K-intearable. and moreover

T(G) = v J GdK.

Furthermore \\T\\ = \\K\\ .

Conversely if K is any convex and bounded. L(X,Y) valued,

set function, then each GeAC(S,X,F) is K-integrable and v 1 GdK

defines a continuous linear operator from AC(S,X,F) into Y.

HUHT LIBRARY
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Proof; Let Z be any finite subset of S and let

up[B(Z,0) 0 E]
VZ,a (E) = up B(Z,a))

then V i s f initely additive and V_ „ < < u_. Let »b_ be
Z,0 £> O r 4,a

be the corresponding function in AC(S,F). Define the function K

by the equation

K(B(Z,a))« x = T(,|)z^a.x) ,

then

\|K(B(Z,O)). x|lY = ||T(,|,z^a.x)||y

Since

we have that

114 1 |lTl|.
Now,

. U (B(Z,o))
VZ,G(E) " ] I UF(B(Z,c))'

Su (B(Z,o))V_ (E)
a G Z ' a

Thus by theorem 1,

From Leirana 5 , we have
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T(G) = lim T(pGz)

z
= lim T(EL(Z,a)G&_ )

z a ^"a

= lim 2K(B(Z,o))L(Z,a)G
z a

= v J GdK.

Also

= sup HK(B(Z,O))»X\L,

= HK(B(Z,0))HL(XfY).

Hence

\M = ||K||.

Conversely suppose that K is a bounded, convex, L(X,Y)

valued set function. Tfrien

flv j P G Z dK - V J P G Z dKH 1 l|pGz - P G Z H \\K\\.

Since Y is complete this shows that G is K-integrable and moreover that

v f GdK = lim v J pG dK.

We now define the concept of a Lipschitz function and characterize

the space of all such functions in terms of convex and bounded set

functions.

Definition, Let g be a real valued function defined on S. Then g

is called Lipschitz with respect to F if there exists a constant P

such that
|L.(z,o)g| < PL(z,a)F

for all sets B(x,a). We denote this space of functions by Lip(F) .
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Definition. By the space Lip(X.F) we mean all functions

GeBV(S,X, F) which are approximable in the BV-norm by functions
n

of the form z g.*x., where x.eX and g.e LIP(F) for i = l,2,...,n,
i = 1 i i 1 i

We now want to give a characterization of the space Lip(X,F)

in terms of convex and bounded set functions. For this purpose we

introduce a special class of convex and bounded set functions which

we denote by M (X,F) .

Definition. Let K be a convex and bounded X-valued set function.

We say that KeMri(X,F) if and only if for each £ > 0, there are finite

collections {K..,K2,...,K ) and {x-,x ,.. . , x n ) f where each Ki is

scalar,convex,and bounded and each x.eX, and such that

n

for all partitions {B.} of A into sets of B-type. Clearly

M (X,F) is a linear space.

Theorem 3. The spaces M (X,F) and Lip(X,F) are linearly isomorphic.

Proof; Consider He Lip(X,F) and € > 0, then there exists a finite

set [h^,h2,... ,hn) where each h^eLip(F) and a finite set

(x, ,x0,. . . ,x }, x.eX such that
l *L n l

n

i=l 1 1

Let u^ correspond to H and define K^ by the equation
rl rl

VU<B)
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and if m. corresponds to h. define k. by the equation

ui(B)
ki(B) = V i T '

for each i, for all sets B of B-type. It follows that the set

functions K ,Kn.....K are all convex and bounded. We now showli I7 n

that K^eM (X,F). Let {B.} be a partition of A into sets of the

B-type, then

n
2UW(BJ llK̂ B.) - 2 k, (B.)-xJ =SUF(B..) UKjjtBj) I k i(B j) . x±\

n
Z n±(B.). x±\\ < i .

i=l

Conversely, consider K€MC(X,F) . Then for £ > 0 there exists

,K 2 , . . . ,K } and {x.^x^ . . . ,xn) such that

..) \\KCBj) - E ^ ( B ^ . x ^ l < £

for a l l part i t ions {B.} of A into sets of B-type. If we define

and

u(B) = u (B)K(B)

mi(B) = up(B)K±(B)

then it is easy to check that u__ and the m.!s are finitely additive
Jx 1

and absolutely continuous with respect to F. Let HT. correspond to

u__ where H.-.eAC(S,X,F) and h. correspond to m. where
j\ J\ l l

hieAC(S,F) 3 then

.ViXi
1=1
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Now the maps K—>H and H—J>K^ are inverses of one another.

Consequently the theorem is shown since linearity is immediate.

Remark. It should be pointed out that the above characterization is

rather different from the scalar case as in [1] . While the map H >K^

was straight forward in the scalar case, we have seen that in our

vector setting a weighted-type of variation is needed.to define the

map.
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