Carnegie Mellon University
Browse
ARCHIVE
S26.zip (2.72 GB)
ARCHIVE
S27.zip (3.14 GB)
ARCHIVE
S28.zip (2.95 GB)
.ZIP
S01.zip (6.27 GB)
.ZIP
S02.zip (5.8 GB)
.ZIP
S03.zip (5.64 GB)
.ZIP
S04.zip (5.54 GB)
.ZIP
S05.zip (5.94 GB)
.ZIP
S06.zip (5.89 GB)
.ZIP
S07.zip (5.67 GB)
.ZIP
S08.zip (5.68 GB)
.ZIP
S09.zip (6.01 GB)
.ZIP
S10.zip (5.43 GB)
.ZIP
S11.zip (5.94 GB)
.ZIP
S12.zip (5.41 GB)
.ZIP
S13.zip (5.79 GB)
.ZIP
S14.zip (5.94 GB)
ARCHIVE
S15.zip (2.83 GB)
ARCHIVE
S16.zip (2.72 GB)
ARCHIVE
S17.zip (2.8 GB)
1/0
29 files

EEG-BCI Dataset for "Continuous Tracking using Deep Learning-based Decoding for Non-invasive Brain-Computer Interface"

dataset
posted on 2024-04-03, 20:23 authored by Dylan ForenzoDylan Forenzo, Bin HeBin He

This EEG Brain Computer Interface (BCI) dataset was collected as part of the study titled: “Continuous Tracking using Deep Learning-based Decoding for Non-invasive Brain-Computer Interface”. If you use a part of this dataset in your work, please cite the following publication:

D. Forenzo, H. Zhu, J. Shanahan, J. Lim, and B. He, “Continuous tracking using deep learning-based decoding for noninvasive brain–computer interface,” PNAS Nexus, vol. 3, no. 4, p. pgae145, Apr. 2024, doi: 10.1093/pnasnexus/pgae145.

This dataset was collected under support from the National Institutes of Health via grants AT009263, NS096761, NS127849, EB029354, NS124564, and NS131069 to Dr. Bin He.

Correspondence about the dataset: Dr. Bin He, Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, PA 15213. E-mail: bhe1@andrew.cmu.edu

Funding

AT009263

NS096761

NS127849

EB029354

NS124564

NS131069

History

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC