File(s) stored somewhere else

Please note: Linked content is NOT stored on Carnegie Mellon University and we can't guarantee its availability, quality, security or accept any liability.

A probabilistic model of theory formation.

journal contribution
posted on 01.02.2010 by Charles Kemp, Joshua B. Tenenbaum, Sourabh Niyogi, Thomas L. Griffiths

Concept learning is challenging in part because the meanings of many concepts depend on their relationships to other concepts. Learning these concepts in isolation can be difficult, but we present a model that discovers entire systems of related concepts. These systems can be viewed as simple theories that specify the concepts that exist in a domain, and the laws or principles that relate these concepts. We apply our model to several real-world problems, including learning the structure of kinship systems and learning ontologies. We also compare its predictions to data collected in two behavioral experiments. Experiment 1 shows that our model helps to explain how simple theories are acquired and used for inductive inference. Experiment 2 suggests that our model provides a better account of theory discovery than a more traditional alternative that focuses on features rather than relations.

History

Date

01/02/2010

Exports

Exports