file.pdf (1.42 MB)

Estimating Learning E↵ects: A Short-Time Fourier Transform Regression Model for MEG Source Localization

Download (1.42 MB)
journal contribution
posted on 01.11.2004, 00:00 by Ying Yang, Michael J. Tarr, Robert Kass

Magnetoencephalography (MEG) has a high temporal resolution well-suited for studying perceptual learning. However, to identify where learning happens in the brain, one needs to ap- ply source localization techniques to project MEG sensor data into brain space. Previous source localization methods, such as the short-time Fourier transform (STFT) method by Gramfort et al.([Gramfort et al., 2013]) produced intriguing results, but they were not designed to incor- porate trial-by-trial learning effects. Here we modify the approach in [Gramfort et al., 2013] to produce an STFT-based source localization method (STFT-R) that includes an additional regression of the STFT components on covariates such as the behavioral learning curve. We also exploit a hierarchical L 21 penalty to induce structured sparsity of STFT components and to emphasize signals from regions of interest (ROIs) that are selected according to prior knowl- edge. In reconstructing the ROI source signals from simulated data, STFT-R achieved smaller errors than a two-step method using the popular minimum-norm estimate (MNE), and in a real-world human learning experiment, STFT-R yielded more interpretable results about what time-frequency components of the ROI signals were correlated with learning.


Publisher Statement

© Copyright 2003 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at ( or from the AMS at 617-227-2425 or