Spline Approximations to Value Functions: A Linear Programming Ap.pdf.pdf' (451.94 kB)

Spline Approximations to Value Functions: A Linear Programming Approach

Download (451.94 kB)
journal contribution
posted on 01.03.1968 by Michael Trick, Stanley E. Zin
We review the properties of algorithms that characterize the solution of the Bellman equation of a stochastic dynamic program, as the solution to a linear program. The variables in this problem are the ordinates of the value function; hence, the number of variables grows with the state space. For situations in which this size becomes computationally burdensome, we suggest the use of low-dimensional cubic-spline approximations to the value function. We show that fitting this approximation through linear programming provides upper and lower bounds on the solution to the original large problem. The information contained in these bounds leads to inexpensive improvements in the accuracy of approximate solutions.

History

Publisher Statement

All Rights Reserved

Date

01/03/1968

Exports

Exports