Carnegie Mellon University
Browse

3D Modeling Using a Statistical Sensor Model and Stochastic Search

Download (317.8 kB)
journal contribution
posted on 2003-01-01, 00:00 authored by Daniel F. Huber, Martial Hebert
Accurate and robust registration of multiple three dimensional (3D) views is crucial for creating digital 3D models of real-world scenes. In this paper, we present a framework for evaluating the quality of model hypotheses during the registration phase. We use maximum likelihood estimation to learn a probabilistic model of registration success. This method provides a principled way to combine multiple measures of registration accuracy. Also, we describe a stochastic algorithm for robustly searching the large space of possible models for the best model hypothesis. This new approach can detect situations in which no solution exists, outputting a set of model parts if a single model using all the views cannot be found. We show results for a large collection of automatically modeled scenes and demonstrate that our algorithm works independently of scene size and the type of range sensor. This work is part of a system we have developed to automate the 3D modeling process for a set of 3D views obtained from unknown sensor viewpoints. 1 Introduction Modeling-from-reality is the process of creating digital three-dimensional (3D) models of real-world scenes from 3D views as obtained, for example, from range sensors or stereo camera systems

History

Publisher Statement

"©2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Date

2003-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC