A 3D-Stacked Logic-in-Memory Accelerator for Application-Specific Data Intensive Computing
This paper introduces a 3D-stacked logic-in-memory (LiM) system that integrates the 3D die-stacked DRAM architecture with the application-specific LiM IC to accelerate important data-intensive computing. The proposed system comprises a fine-grained rank-level 3D die-stacked DRAM device and extra LiM layers implementing logic-enhanced SRAM blocks that are dedicated to a particular application. Through silicon vias (TSVs) are used for vertical interconnections providing the required bandwidth to support the high performance LiM computing. We performed a comprehensive 3D DRAM design space exploration and exploit the efficient architectures to accelerate the computing that can balance the performance and power. Our experiments demonstrate orders of magnitude of performance and power efficiency improvements compared with the traditional multithreaded software implementation on modern CPU.