Carnegie Mellon University
Browse

A Data-Driven Approach to Quantifying Natural Human Motion

Download (2.08 MB)
journal contribution
posted on 2005-01-01, 00:00 authored by Liu Ren, Alton Patrick, Alexei A Efros, Jessica Hodgins, James M. Rehg
In this paper, we investigate whether it is possible to develop a measure that quantifies the naturalness of human motion (as defined by a large database). Such a measure might prove useful in verifying that a motion editing operation had not destroyed the naturalness of a motion capture clip or that a synthetic motion transition was within the space of those seen in natural human motion. We explore the performance of mixture of Gaussians (MoG), hidden Markov models (HMM), and switching linear dynamic systems (SLDS) on this problem. We use each of these statistical models alone and as part of an ensemble of smaller statistical models. We also implement a Naive Bayes (NB) model for a baseline comparison. We test these techniques on motion capture data held out from a database, keyframed motions, edited motions, motions with noise added, and synthetic motion transitions. We present the results as receiver operating characteristic (ROC) curves and compare the results to the judgments made by subjects in a user study.

History

Publisher Statement

Copyright © 2005 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org. © ACM, 2005. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in the International Conference on Computer Graphics and Interactive Techniques http://doi.acm.org/10.1145/1186822.1073316

Date

2005-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC