file.pdf (240.02 kB)
Download file

A Uniformly Consistent Estimator of Causal Effects under the kk-Triangle-Faithfulness Assumption

Download (240.02 kB)
journal contribution
posted on 01.11.2014, 00:00 by Peter SpirtesPeter Spirtes, Jiji Zhang

Spirtes, Glymour and Scheines [Causation, Prediction, and Search (1993) Springer] described a pointwise consistent estimator of the Markov equivalence class of any causal structure that can be represented by a directed acyclic graph for any parametric family with a uniformly consistent test of conditional independence, under the Causal Markov and Causal Faithfulness assumptions. Robins et al. [Biometrika 90 (2003) 491–515], however, proved that there are no uniformly consistent estimators of Markov equivalence classes of causal structures under those assumptions. Subsequently, Kalisch and Bühlmann [J. Mach. Learn. Res. 8 (2007) 613–636] described a uniformly consistent estimator of the Markov equivalence class of a linear Gaussian causal structure under the Causal Markov and Strong Causal Faithfulness assumptions. However, the Strong Faithfulness assumption may be false with high probability in many domains. We describe a uniformly consistent estimator of both the Markov equivalence class of a linear Gaussian causal structure and the identifiable structural coefficients in the Markov equivalence class under the Causal Markov assumption and the considerably weaker k-Triangle-Faithfulness assumption.

History

Publisher Statement

© Institute of Mathematical Statistics, 2014

Date

01/11/2014

Usage metrics

Categories

Exports