# A Uniformly Consistent Estimator of Causal Effects under the kk-Triangle-Faithfulness Assumption

Spirtes, Glymour and Scheines [*Causation*, *Prediction*, *and Search* (1993) Springer] described a pointwise consistent estimator of the Markov equivalence class of any causal structure that can be represented by a directed acyclic graph for any parametric family with a uniformly consistent test of conditional independence, under the Causal Markov and Causal Faithfulness assumptions. Robins et al. [*Biometrika* **90** (2003) 491–515], however, proved that there are no uniformly consistent estimators of Markov equivalence classes of causal structures under those assumptions. Subsequently, Kalisch and Bühlmann [*J. Mach. Learn. Res.* **8** (2007) 613–636] described a uniformly consistent estimator of the Markov equivalence class of a linear Gaussian causal structure under the Causal Markov and Strong Causal Faithfulness assumptions. However, the Strong Faithfulness assumption may be false with high probability in many domains. We describe a uniformly consistent estimator of both the Markov equivalence class of a linear Gaussian causal structure and the identifiable structural coefficients in the Markov equivalence class under the Causal Markov assumption and the considerably weaker *k*-Triangle-Faithfulness assumption.