Carnegie Mellon University
Browse

A Very Fast Method for Clustering Big Text Datasets

Download (241.26 kB)
journal contribution
posted on 2010-08-01, 00:00 authored by Frank Lin, William W. Cohen

Large-scale text datasets have long eluded a family of particularly elegant and effective clustering methods that exploits the power of pair-wise similarities between data points due to the prohibitive cost, time- and space-wise, in operating on a similarity matrix, where the state-of-the-art is at best quadratic in time and in space.

We present an extremely fast and simple method also using the power of all pair-wise similarity between data points, and show through experiments that it does as well as previous methods in clustering accuracy, and it does so with in linear time and space, without sampling data points or sparsifying the similarity matrix.

History

Publisher Statement

© 2010 The authors and IOS Press

Date

2010-08-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC