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A PHASE-FIELD THEORY FOR SOLIDIFICATION BASED ON A
GENERAL ANISOTROPIC SHARP-INTERFACE THEORY

WITH INTERFACIAL ENERGY AND ENTROPY

Eliot Fried
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Pennsylvania State University
University Park, PA 16802

Morton E. Gurtin
Department of Mathematics
Carnegie Mellon University

Pittsburgh, PA 15213

Using balance laws for microforce and energy in conjunction with constitutive
equations consistent with the second law, we develop a general phase-field theory
that allows for a constitutive dependence of the internal energy and entropy on the
order-parameter gradient. A matched asymptotic analysis—appropriate to the limit
of decreasing interface thickness—demonstrates the consonance of our theory with
a general, thermodynamically consistent sharp-interface theory that accounts for
anisotropic interfacial energy and entropy, interfacial tension and shear, and
dissipative transition kinetics.

1. INTRODUCTION
Solidification is often described by a modified Stefan problem—for the devia-

tion u of the temperature from its transition value—in which the free-boundary
conditions

u s (constant) K̂  + (constant) V ,̂

(latent heat) V^ « jump in normal heat-flux across the interface,

involve the total curvature1 K̂  and normal velocity V^ of the interface J&, and
consequently lead to problems of great difficulty. For that reason Langer [I],2

Fix [3], Collins and Levine [4], and Caginalp [5] introduce and study a model in
which the phase of the material is characterized by an order parameter cp, called
the phase field; ip has nearly constant values in each bulk phase and, between
phases, makes a smooth but rapid transition within a thin layer that represents
the sharp interface3 of the Stefan model.
1 Twice the mean curvature, a measure of curvature that we use throughout the paper.
2Based on Model C of Halperin, Hohenberg, and Ma (2].

An interface of zero thickness.
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The phase-field model consists of a modified heat equation

cu* + pep* * kAu (1.2)

supplemented by a Ginzburg-Landau equation

bep- « IpAcp - $'(cp) + pu, (1.3)

where c, k, b, Zp, and p are constants, with all but p strictly positive, and 3Kcp) is a
double-well potential whose wells "define" the phases. The Ginzburg-Landau equa-
tion (1.3) is obtained as the relaxation law bcp'«-6376<p for the "free-energy"

) « J{3Kcp) + i^tVcpl2 - pucp}dv (Q = underlying region of space), (1.4)
Q

in which the gradient free-energy (density) ^ vp IVcpl2 accounts for interfacial
energy in the transition layer. (Here 87/6cp is the variational derivative of 7 with
respect to cp.)

There are now analytical and computational support for the use of phase-field
models to regularize Stefan-type problems. Soner [6] proves that, modulo a sui-
table scaling, a slightly modified version of the phase-field equations approaches
the Stefan system based on (1.1) as the "interface thickness" tends to zero;4

and computational studies of Caginalp and Socolovsky [15], Koboyashi [16], and
Wheeler et al. [17], among others, demonstrate that phase-field models capture
the qualitative features of solidification, including dendritic growth.

These studies present little information regarding the theoretical status of
phase-field models within the framework of continuum physics. In fact, Penrose
and Fife [18] and Wang et al. [19], arguing that the derivations given in [1,3-5] are
based on a free-energy functional and therefore applicable only under isothermal
conditions, develop theories based on an entropy functional. The Ginzburg-Landau
equation is derived variationally by Penrose and Fife as a relaxation law and by
Wang et al. using a local formulation of the second law, and it is unclear from
either of these derivations whether the Ginzburg-Landau equation should be
viewed as a balance law, as a constitutive equation, or as a combination of the
two.

Concurrently with [19], we developed, in [20], a framework for theories of
phase-field type based on a perspective, common in continuum mechanics, in
^Earlier, Stoth 17,8] established convergence under radial symmetry for u « (constant)K^.
Formal asymptotics for the general problem were given in 11,3-5), while [9-14] formally
relate the phase-field equations to other equations of physical interest.
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which balance laws are carefully distinguished from constitutive equations. What
is new in [20] is the introduction of a balance law for microforces5 (defined ope-
rationally as forces that expend power over changes in the order parameter);
when supplemented by thermodynamically consistent constitutive equations, this
force balance reduces to a Ginzburg-Landau equation. Here, in the spirit of [20],
we develop and study a fairly general class of phase-field models. We were led to
continue the program of [20] for two reasons:

(1) Although the models developed in [18] and [19] result in PDEs of seemingly
suitable structure, the derivations fail to include the internal energy of the inter-
facial layer and fail to account for the working (i.e., power expenditure) associated
with changes in the order parameter; for a thin interface this working is impor-
tant as it represents surface-excess forces.

(2) While [20] provides a basic thermodynamic framework for phase-field
theories, it lacks the constitutive specificity needed to capture the detailed physics
of a thin interface.

The usual argument supporting the neglect of interfacial internal-energy in
models of phase-field type seems based on the observation that (1.1)2, which ex-
presses balance of energy across the interface, neglects the internal energy of the
interface. But (1.1) are the result of approximating general interface conditions
that include both interfacial internal energy and interfacial entropy, and while
the former is neglected in (I.D2, it is generally present in (l.l)i, as the coefficient
of K̂  is typically proportional to the free energy at the transition
temperature.6 Further, the internal energy and entropy of the interface would
generally seem of the same order, whereby a theory that retains the entropy of
the interface but neglects its internal energy would appear unsound.

As in [20], we begin with balance of energy and growth of entropy in forms
that allow for both power and heat flow induced by temporal and spatial varia-
tions in the order parameter <p, and we use this structure to establish thermody-
namically admissible constitutive equations; in particular, we are led to relations
in which the free energy \\> and entropy y] depend not only on the temperature e,
but also on cp and Vcp:7

5We believe that kinematical variables introduced to model microstructure require addi-
tional force and/or moment balances. Such microbalances can be motivated from statical
considerations as Euler-Lagrange equations corresponding to independent variations of the
microstructural kinetic-variables. In 120] we referred to such forces as accretive; but we
now prefer the term microforces.
6Cf., e.g., Mullins and Sekerka [21], Gurtin [22,23].
7daF(...,a,b,...) denotes the partial derivative of F(...,a,b,...) with respect to a.



- 4 -

^ • +(e,cp,Vcp), x] = fi(e,(p,V(p) « -s$4>(e,<p,v<p). (1.5)

An essential ingredient of our theory is the exchange energy $(cp), which is the
free energy $(eM,cp,O) at the transition temperature O*eM and Vcp=O; we assume
that $(cp) is a double-well potential whose minima are at cp = 0 and cp « 1 and
satisfy $(0) * $(1). Writing

m * Vcp/lVcpl (1.6)

for the unit normal to level sets of cp, we express the free energy as a sum of
3Kcp), a bulk energy v}/bu(e,(p), and a gradient energy ^ vp(etcp.m)IVcpl2,

4>bu(e,<p) + ^(e,cp,m)IVcp|2, (1.7)

a decomposition that uniquely defines the bulk energy and yields, for the entropy,

fi(e,cp,V<p) * tibu(e,cp) + $T)(e,cp,m)|Vcpl2, (1.8)

with f)bu = - 3 e ^ b u and T) = -9eij;. We present strong arguments in support of a
heat flux given constitutively as the sum of a standard flux down a temperature
gradient plus a kinetic flux8

qkin c -JeTi(e,<p,m)cp#V<p. (1.9)

Interestingly, in the relation for the entropy production the term involving qkin

cancels with another term, rendering this kinetic flux nondissipative.
We derive a hierarchy of phase-field equations at various levels of generality.

For a material with \\> and kinetic modulus b independent of cp and with conduc-
tivity tensor K independent of Vcp, the resulting PDEs have the form

c(e,cp)e# + e{S(pf)bu(e,cp)cp' • £(|Vcpl2fj(e,m))# - £div(Ti(e,m)cp-Vcp)} «

div(K(e,cp)Ve) • b(e,m)(cp-)2,

b(e,m)cp' d ( ) ( ) V } | V l S ( ) }

8 I n a report of Gurtin [24] the kinetic heat-flux has the form q k i n « - e n<p'V<p (•) and hence

differs from (1.9) by a factor of 2; we now believe that (•) and hence the PDEs derived in

[24] do not yield valid models for a thin interface.
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with c(e,(p) * eSe T|bu(3,<p) the (bulk) specific heat. For an isotropic material these
PDEs reduce to9

c(ef(p)e- + e{a,fibu(e,<p)<p- + £ (IVcpl2;n(e))- -

div(k(e,cp)Ve) * b(e)(cp-)2,
(1.11)

b(e)cp- * (jb j

with k(e,(p) the conductivity.
We present a formal matched-asymptotic analysis that compares the general

(anisotropic) diffuse-interface theory developed here with the sharp-interface
theory of Gurtin [22] (see also [23-26]), a theory that accounts for: (i) the energy
and entropy of the interface; (ii) general surface-excess forces, including surface
shear; and (iii) interface kinetics. Specifically, granted a simple scaling, with a
(small) scale parameter 6, in which the gradient free-energy and kinetic modulus
are 0(8), the bulk free-energy and conductivity are 0(1), and the exchange
energy is CXS"1), we show that, formally, as 6-+0, the PDEs

(1.10) converge to the bulk PDEs and the interface conditions of [22].10

Further, because the forms of the basic laws upon which we base our theory are
relatively new, we strengthen our results by showing that

the global integral laws of our theory converge to those of [22].

The theory developed here may be viewed as a regularization of the sharp-
interface theory of [22]: given thermodynamically consistent constitutive
functions (of arbitrary complexity) that characterize the interfacial and bulk
behavior of a particular two-phase material with sharp interface, we show that
one can always construct a corresponding regularizing diffuse-interface theory of
the type developed here. The final section of the paper contains complete recipes
for the construction of such a regularizing theory.

9It seems important to leave $(e) and 7j(e) temperature dependent. If $ is constant, then

?i«0. More generally, if fj and its counterpart c for the internal energy are constant, which

may appear reasonable, then the equivalent sharp-interface free-energy f(e) and entropy

s(e) have the (unexpected) forms: f(e)«(I-e TJ)J , £(*)»-} r\( t-B rj)"} .
1 0To our knowledge, all other theories of phase-field type have, as formal asymptotic

limits, the sharp interface conditions of 122], but with terms missing or approximated. Of

course, the missing terms may, under certain circumstances, be small and the

approximations valid, but that should not preclude the search for a more inclusive theory.
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2. GENERAL THEORY11

2.1. Basic equations
The primitive quantities of the theory are the fields

t internal energy
B absolute temperature
X) entropy
q heat flux
cp order parameter (scalar)
5 microstress (vector)
TT internal microforce (scalar)

defined for all time on the region of space Q occupied by the material; the basic
laws are balance of energy

{ J e d v } ' - -Jq-nda + Jcp^-nda, (2.1)

R SR SR

growth of entropy

{Jtldv}* > - J(q/e).nda, (2.2)
R dR

and a microforce balance

+ J-rcdv = 0 (2.3)
SR R

for each control volume R (subregion of Q), where n is the outward unit normal
to dR. These global laws have local forms

c* * -divq + div(cp"O,

r\* « -div(q/e) • T, (2.4)

div£ + n « 0,

vrith F ̂  0 the entropy production; together they yield the dissipation inequality

- e r < o (2.5)

11Scctions 2.1-2.3 arc taken from (201.
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in which

*|i • e - en (2.6)

denotes the free energy.
An important feature of the thermodynamic structure is the existence of

natural Lyapunov functionals: a direct consequence of (2.1), (2.2), and the second
of (2.4) is that, granted cp-£*n= 0 on 9Q,

{Jedv}# * 0, (jTldv}# « JTdv > 0 if q-n « 0 on d&; (2.7)
fi Q Q

{J(e - e0Ti)dv}- * -e0JTdv < 0 if e * e0* constant on dQ. (2.8)
Q Q

2.2. Constitutive equations. Consequences of the dissipation inequality
We consider constitutive equations of the form12

ty = $>(..). x) « r\L.), q - q(..), * - E(..), TT = IT(..), (2.9)

with (..) shorthand for the list

(..) = (e,Ve,cp,Vcp,cp-). (2.10)

A requirement of the theory is that the constitutive relations be compatible
with the dissipation inequality (2.5). Writing

g « Ve, r = e#, p « Vcp, s « q>\ (2.11)

it follows that, for any choice of the fields e(x,t) and cp(x,t),

{9 ,$ ( . . )* TTU)S • {3#$(..) • fj(..))r • { a p $ U - ft(..)).p- +

(9g»(--))'g' * 9t$(..)s- • e- iqD-g • -»r s 0. (2.12)
1 2 We carefully distinguish betweeen fields and their constitutive response functions; thus,
e.g., the first of (2.9) signifies that the free-energy ^(x,t) is given at each (x,t) through a
constitutive relation of the form tp(x,t)« fy(e (x,t) , Ve(x,t),fp(x,t).V<p(x,t),«p#(x*t)), s o t h a t ^
represents the constitutive response function for the free energy, while \^«^(x,t) represents
the actual free energy as a field over the body. We will consistently write & for the
constitutive function that delivers a field $. As is tacit from this discussion, we restrict
attention to homogeneous materials.
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It is possible to find fields e(x,t) and <p(x,t) such that e, g«Ve, g'«Ve\ r*e \ cp,
s*cp\ s-*cp*\ p«Vcp, and p*«Vcp* have arbitrarily prescribed values at some chosen
point and time. Since (..) = (e,g,cp,p,s), the quantities r, g\ s \ and p* appear line-
arly in (2.12); therefore ds$ * 0, dg$ = 0, dB$ *-f|, and dp$« £, for otherwise r,
g \ s \ and p" could be chosen to violate (2.12). The free energy, entropy, and
microstress are thus independent of g and cp* and related through

ri(e,cp,Vcp) = -de$(e,cp,Vcp), S(e,cp,V<p) = dp$(e,cp,Vcp), (2.13)

and the entropy production is given by

e 2 r = -eH(..)cp- - q(..)-ve > o (2.14)

with

^ TT(..). (2.15)

The general solution of (2.14) is

e ( 2 1 6 )

in which b(..), a scalar kinetic modulus, d(..) and a(. .) , vector cross-coupling
coefficients, and K(..), the conductivity tensor, are consistent with

eb(e,g,cp,p,s)s2 + sg-{ea(e,g,cp,p,s) -»• d(e,g,cp,p,s)} + g-K(e,g,cp,p,s)g > 0. (2.17)

The relations (2.7), (2.13)1, and (2.16)2 yield

e * e(e,cp,Vcp) « (p(e,cp,Vcp) - eSe$(e,cp,Vcp),

$ - b(..)cp# - a(..)

as well as the identity

aee(e,cp,vcp) « -eseae4;(e,cp,vcp) « e3efi(e,cp,Vcp). (2.19)

Further, because of (2.14), the entropy balance (2.4)2 implies that
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9x\9 « -divq - TT(..)<p\ (2.20)

which, granted the constitutive equations (2.13) and (2.16), is equivalent to the
energy balance (2A)x.

2.3. Generalized phase-field equations
The PDEs of the theory, which follow upon substituting the thermodynami-

cally reduced constitutive relations for e, q, 5, and n into the local balances for
energy and microforce, are

+ 9(p e(e,cp,V(p)cp- + 3

div{K(..)Ve + [d(..)^Sp^(e^,Vcp)]cp-}. ( 2 2 1 )

b(..)cp- = div{Sp^(e,(p,V(p)} - 3v$(e,cp,Vcp) - a(..)-Ve.

This is the most general system based on constitutive relations (2.9) that are con-
sistent with the second law in the form of the dissipation inequality (2.5). An
equation equivalent to (2.21)!—and one we will generally use—is the following
consequence of (2.20) and the constitutive equations:

eaef5(..)e# + ea<pfi(..)<p- + espfj(..)-Vip- =

div{K(..)Ve + d(..)(p-) + B(..)(cpO2 • cp-a(..).Ve. (2.22)

2.4. Decomposition of the heat flux and internal force
The constitutive equations (2.16) show Ve and cp* to be the fields that, in some

sense, most influence q and TT; in fact, for B and <p close to constant values e0

and cp0, so that l e - e o l , iVel, lcp-(po|, iVcpl, and Icp'l are small, say O(H),

o o O(H2),

with d0, Ko, b0, and a0 constant. An expansion of the form (2.23) holds also for
IVel and Icp'l of O(H), irrespective of (e,ip,V<p), but then the coefficients depend on
(e,cp,V(p). Guided by this, we assume that

(Al) q(..) and TT(..) are linear functions of (Ve,<p'):13

1 3Fried and Stiehl [27] relax this assumption, allowing more general dependence of q
and TT on (Ve,<p#) and, consequently, for both interfacial conductivity and nonlinear
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q(..) « -d(e,ip,v<p)cp- - K(e,cp,v<p)Ve, ( 2

Tit.) * -b(e,cp,Vcp)tp- - a(e,cp,V<p)'Ve.

Consequences of (2.24) are the relation

e2r « eb(e,tp,Vcp)(cp-)2 + cp-Ve.{ea(e,(p,Vcp) + d(e,(p,Vcp)} + Ve-K(e,cp,Vcp)Ve > 0
(2.25)

for the entropy production (2.14), the decomposition

q * qth + qkinf qth m -K(e,cp,V<p)Ve, qkin « -d(e,cp,V<p)cp- (2.26)

of q into a thermal flux qth down a temperature gradient and a kinetic flux
qkin induced by temporal variations in the order parameter, and the decom-
position

TT = n t h + TTkin, Tith * -a(e,cp,Vcp).Ve, Tikm = - B(e,(p,V(p)(p-f (2.27)

of TT into thermal and kinetic parts Ttth and Tckin.

2.5. Configurational fields. Basic laws for evolving control volumes
Configurational fields represent power and heat associated with the addition

and removal of material, and are therefore central to the study of phase inter-
faces. Following Gurtin [25], we consider a configurational stress tensor C and a
scalar configurational heating Q, which we describe using control volumes R(t)
that evolve with time: if v(x,t) is a velocity field for c)R(t), constructed using a
time-dependent parametrization for 3R(t), and if V*v*n is the corresponding
normal velocity, then

JCn-vda, jQVda, J(Q/e)Vda (2.28)
dR dR dR

represent power expended on R and flows of heat and entropy into R associated
with the motion of 3R. Using these fields we write balance of energy and growth
of entropy—for an arbitrary evolving control volume R*R(t)—in the form

transition kinetics.
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{ J e d v } # « -Jq-nda + jQVda + 10(R), (2.29)
R SR SR

{ jTidv}- > - J (q /e ) .nda + J(Q/e)Vda, (2.30)
R SR SR

where

1tf(R) m JcpD^.nda + JCn-vda (2.31)
3R 3R

is the working with

cpD * cp- -»• V(p-v (2.32)

the rate of change of tp following the evolution of SR as described by v .
To ensure that the energy balance (2.29) be independent of the choice of

parametrization used in the construction of the velocity field v , we require that
(2.29) hold for all parameterizations, an assumption equivalent to the require-
ment that the working (2.31) be invariant under changes in parameterization,
and hence, by (3.5), that

{ p O ) (2.33)
SR

be invariant under such changes. Changes in parameterization affect the tangen-
tial component of v , but leave the normal component unaltered. In fact, inva-
riance of (2.33) is equivalent to the requirement that t«[C + (Vtp®£)]n - 0 on SR for
all tangential vector fields t on SR; thus, since R is arbitrary, [C + (Vcp®^)]n must
be parallel to n for all n, and there is a scalar field $ such that

p * 1 . (2.34)

Thus

J&Vda, (2.35)
3R SR

and (2.29), (2.30), the identity

{ Jf dv }* - Jf dv + Jf V da (2.36)
R R SR
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with f*e and f=n, and the fact that V can be chosen arbitrarily yield e * Q + $ and
r\ * Q/e. The configurational fields C and Q therefore have the specific forms:14

C « i|>l - V(p®$, Q = BT\, (2.37)

relations that are independent of particular constitutive assumptions.
The microforce balance (2.4)3 and the reduced constitutive relations (2.13)

and (2.18) then yield the configurational force balance

divC • f = 0, (2.38)

where

f = {b(..)qr + a(..)-Ve}Vcp + nVe (2.39)

represents internal configurational forces. Conversely, granted (2.13) and (2.18),
(2.38) implies the microforce balance (2.4)3.

1 4This argument is analogous to that leading to (3.21) and (6.6) of [25].
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3. UNIFORMITY SURFACES
3.1. Definition. Basic identities for normal velocity and curvature

In the theory developed here the phase interface is diffuse, with no sharp
distinction between phases; loosely speaking, each value of the order parameter
represents a particular phase of the material. For that reason the level sets

Z(t) * (x:cp(x,t) = constant} (3.1)

play an important role; we will refer to the sets >8(t) as uniformity surfaces. In
applications of the diffuse-interface theory the interface is often a thin surface-
like region consisting of closely-packed uniformity surfaces.

To ensure that uniformity surfaces are well-defined, we require that

t = |Vcpl * 0. (3.2)

Then

m « Vcp/«, V = -cpVJ (3.3)

represent, at each (x,t), a unit normal field and corresponding normal velocity for
the uniformity surface through x at time t; the tensor field

P = 1 - m®m (3.4)

projects vector fields onto their components tangent to uniformity surfaces;

L «= -(Vm)P, K « trL * -divm (3.5)

are the curvature tensor and total curvature (twice the mean curvature) of
uniformity surfaces; and, for $ a scalar field and v a vector field,

8° * 8- + V$.(Vm), v° * v • (VvKVm) (3.6)

represent time derivatives following the normal trajectories of uniformity surfa-
ces. Consequences of these definitions are the identities

Vt« (VV(p)m, V «m-Vcp\ IVm «= PVVcp, tm# « PVcp\ (3.7)

and, hence, the relations
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L * -t^PfVVcpJP, K « -r^Acp - m-(VVcp)m),

m° = -PVV, ! o - - t r n - W . (3*8)

3.2. The zero-flux condition
Consider an evolving control volume R and, as before, let n and V denote the

outward unit normal and corresponding normal velocity of 9R. Assume that 3R
intersects the uniformity surfaces tangentially at most on a set of zero surface-
measure. Let Z(t) be a uniformity surface that intersects 9R(t) transversely along
a smooth closed curve *U(t). Let

v = (l-(n-m)2r*Pn; (3.9)

then f(x,t) is tangent to ,8(t) at X€*U(t) and represents the unit normal to Ti(t)
directed outward from R(t). Since m, n, and v are coplanar, the (intrinsic) velo-
city u of 11 has two components: Vm, which is normal to Zt and Uv, which is
normal to 11, but tangent to >8:

u = Vm + U1/. (3.10)

U, the scalar normal velocity of 11, represents a flux of uniformity-surface area
across 3R; that is, the rate at which uniformity-surface area enters or leaves R
through 3R as Z and R evolve. By considering all uniformity surfaces that cross
3R transversally, the flux U may be defined almost everywhere on 3R.

Since each of the curves 11 evolves on the surface 3R, u is a velocity field for
3R; consequently,

V * n*u * Vn-m + Un«v. (3.11)

Note that for R stationary, if the uniformity surfaces meet dR orthogonally, then
U« 0. More generally, an evolving control volume R satisfies the zero-flux con-
dition if U«0 almost everywhere on 9R, or equivalently, by (3.10) and (3.11), if

V « Vn-m. (3.12)

Finally, for R stationary we have the equivalent identities

Un-v * -Vn-m, U « -(1 - (n-m)2)"*(n-m)V. (3.13)
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4. CONSTITUTIVE RELATIONS FOR A THIN INTERFACE. EXCHANGE ENERGY. BULK
AND EXCESS QUANTITIES. KINETIC HEAT-FLUX

We now introduce assumptions that make precise our physical prejudices
concerning the behavior of bulk phases separated by a thin interfacial layer.
These assumptions yield a natural decomposition of each thermodynamic field
into a field associated with the bulk material and one associated with the inter-
facial layer. A basic premise of our theory is that, with a simple exception,

constitutive dependences on cp (as opposed to Vcp) reflect the
structure of the bulk phases rather than that of the interfacial layer; (4.1)

the exception being the exchange energy $(cp) (the coarse-grain free -energy at

the transit ion temperature) , which is a double-well potential tha t promotes the

separation into bulk phases and represents an important contribution to both the

free energy and the internal energy of the interfacial layer.

4.1. Exchange energy. Bulk and excess constitutive relations

By a douJbie-weii potential w e mean a smooth function 6((p) on IR wi th the

following properties: 0(cp) is s tr ict ly convex on disjoint in terva l s (-<*>,pi) and

(p2,°°) w i t h a m i n i m u m in (-°°,pi) and a m i n i m u m in (p2,°°); 6(<p) is str ict ly

concave on the spinodal interval (pi,p2).

To model the individual phases w e assume that:

(A2) (i) the coarse-grain free energy v|;(e,(p,O), as a function of <p at fixed e, is a

double-well potential whose minima, at cpa(e)< cp^(e), say, define the

phases;

(ii) there is a transition temperature ©M such that cpa(e) is the unique

global m i n i m u m of vp(e,cp,O) for e < e M , while tpp(e) is the unique global

m i n i m u m of vp(e,cp,O) for O > 0 M J 1 5

(iii) 4>(e,cp,O) is strictly concave in e for all cp.

The free energy

4>(eM,<p,O) (4.2)

is then a double-well potential whose (two) minimum values coincide. We refer to
$ as the exchange energy and assume, without loss in generality, that

For solidification ox would then be the solid phase, p the liquid phase.



-16-

<P«(eM> - 0, tpp(eM) * 1, ( 4 3 )

$(cp) > 0, cp * 0,1; *(0) * $(1) = 0.

Roughly speaking, the order-parameter values cp«O and tp«l characterize the
bulk material of phase a and phase p, respectively, while 0 < tp < 1 defines the in-
terfacial layer, a thin layer within which Vcp and cp0 are large.

The gradient energy (̂O,cp,V(p)-(j;(e,cp,O) plays an important role within the
interfacial layer. Phase-field theories are generally based on gradient energies
that are independent of cp (cf. (4.1)) and quadratic in Vcp. Here, to model diverse
types of anisotropy, we consider the dependence on Vcp=|Vcplm in terms of
dependences on I Vcp I and m, with gradient energy quadratic in IVcpl, but an
arbitrary function of m; precisely, we assume that:

(A3) the gradient energy i}>(e,cp,Vcp)-v}>(e,cp,O) is independent of cp and
homogeneous16 of degree two in Vcp:

4>(e,cp,Vcp) = 4>(e,cp,0) + ^(e,m)IV<p|2 (4.4)

(the factor of \ being for convenience).

Since $(0) = $(1) « 0, the exchange energy does not sensibly contribute to the
bulk energy, but it does contribute to the energy of the layer. For that reason, we
introduce the decomposition

4>(e,cp,Vcp) * 4>(e,cp,0) - $(cp) + $(cp) + ^(e.m)IVcpl2, (4.5)
free energy bulk free-energy excess free-energy

of the interfacial layer

which will be basic to all of what follows; as we shall see, in the limit of vani-
shingly small interfacial thickness the bulk free-energy

p) « {j,(e,cp,O) - $(cp) * +(e,cp,O) - 4>(eM,<p,0) (4.6)

at cp«O and cp*l, respectively, corresponds to the free energy of the bulk material
of phase a and phase p, while the excess free-energy

(4.7)

is homogeneous of degree p if, given any scalar X, $(Xz) « Xp$(z) for all z.
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integrated over the layer corresponds to the free energy of the interface.
Bearing in mind (2.6) and (2.13)lf we define bulk and excess values for the

entropy and internal energy through the thermodynamic relations

fibu(e,tp) * - S

fix*(e,v<p) « -ae+xs(e,cp,vcp), ( 4 g )

ebu(e,(p) « (j>bu(e,tp) + efibu(e,cp),

£xs(e,cp,Vcp) « ^xs(e,(p,Vcp) + efixs(e,(p,V(|>).

Then for p equal to ty, e, or T\,

P - p(e,cp,Vcp) = pbu(e,cp) + pxs(e,tp,v<p); (4.9)

in addition,

Tibu « f|(e,(p,O),

eb u = £(e,cp,O) -

4.2. Constitutive equations for qkin and Tith

We begin by rewriting the entropy inequality (2.30) for an evolving control
volume R(t) in the form

J }da, (4.11)
R 3R

where we have used the relation Q* Br\. If (4.11) is appropriate to the physics of a
thin interfacial layer, then for R consistent with the zero-flux condition we would
not expect the terms relevant to the layer to give rise to flows of entropy across
9R. We therefore assume that:

(A4) for each evolving control volume consistent with the zero-flux condition
U-0,
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J(e-iqkin.n . rixsV)da * 0. (4.12)
3R

By (2.26) and (3.12), the integrand in (4.12) has the form cp'j-n, where

j - j(e,cp,Vcp) « e^dte.cp.Vcp) - f)xs(e,Vcp)Vcp/{2, t « IVcpl. (4.13)

Thus, applying the divergence theorem and using the fact that R is arbitrary,

tfdivj + j-Vcp# « 0. (4.14)

Since cp# and Vcp* appear linearly in (4.14), this equality can hold for all fields
e(x,t) and (p(x,t) only if j=0.Thus

d(e,Vcp) « ef)xs(e,V(p)Vcp/{2 « £eTj(e,m)V<p (4.15)

and the kinetic heat flux is related to the gradient entropy through the relation

qkin s ef)xs(e,V<p)Vm = -£eii(e,m)<p"Vcp. (4.16)

This, a main result of the section, should be viewed as a constitutive relation
defining a specific class of phase-field theories.

The next hypothesis concerns the moduli that govern the production of
entropy (2.25). We do not allow for heat flow driven by temperature gradients
within the interface, and therefore drop the dependence of K on Vcp. Further, we
allow the dependence of b on Vcp to at most reflect anisotropy. Bearing this and
(4.1) in mind, and since we have little intuition concerning a, we assume that

(A5) the kinetic modulus b(e,cp,V<p) is independent of cp and homogeneous of
degree zero in Vcp; the conductivity K(e,cp,Vcp) is independent of Vcp;
a($,<p,Vcp) is a homogeneous function (of some degree k>0) in Vcp.

By (A5) and (4.15), the entropy-production inequality (2.25) has the form

eb(e,m)(cp-)2 * cp-Ve-{IVcplkea(e,cp,m) • IVcpld(e,cp,m)} • Ve-K(e,cp)Ve > 0, (4.17)

and must hold for all values of e, Ve, cp, Vcp, and cp*. Therefore |Vcp|kea(e,cp,m) +
|Vcp|d(e,cp,m) « 0 for IVcpl sufficiently large, for otherwise cp'Ve of appropriate
direction would violate (4.17). Thus k=l and
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d(e,Vcp) « -ea(e,cp,Vcp), (4.18)

so that, by (2.27) and (4.15),

Tith * -a(e,V<p).Ve, a(e,Vcp) « -Jfi(e,m)Vcp; (4.19)

therefore both the kinetic heat flux qkin and the thermal internal force 7tth are
related to the gradient entropy. Further, and what is surprising, qkin and n t h

contribute neither to the production of entropy nor to the normal component of
the internal configurational force:

Ve-K(e,cp)Ve + eb(e,m)(<p')2 > 0, - .

fibu(e,cp)m-Ve + tE(e,m)cp\

4.3. Normal configurational force balance

We define the excess configurational stress through

Cxs = i\>**l - Vcp®t. (4.21)

Then (4.9) and the last of (4.10) yield the important relation

cxs m ^xsp + m @ T + j m ® m i (4.22)

where

T - P(C**)Tm « -IPR - - i« 2 am4i(e ,m) , ( 4 2 3 )

J J2^

Since P is the projection onto uniformity surfaces, while T is tangent to such
surfaces, for a thin layer C bounded by uniformity surfaces, 4/xsP represents
surface tension within t f while m®T represents shearing stresses within £ in the
direction m.

Mimicking (2.38), we define fxs through the balance

divCxs + fxs « 0. (4.24)

By (4.9), Cx s«C-^b u l; thus
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fxs « f + Vv|>*\ (4.25)

and (4.25), (4.20)2, and the relation f|bu(e,cp) = - 3e(j;
bu(e,cp) imply that

fxs-m * m-{Vv|;bu + nbuVe} - «2bV, (4.26)

where b * b(e,m). Next, since m«divP * -divm = K,

m-divCxs * +*SK + divT + div(Jm), (4.27)

and the last two equations combine with (4.24) to give the normal configurational
force balance

m-{V^bu + TibuVe) +>XSK + divT • div(Jm) « J2bV, (4.28)

an equation that will be crucial to our discussion of the asymptotics of a thin in-
terfacial layer. (The term m-{ V^bu + nbuVe) can also be written as 19cp^bu(e,cp).)

4.4. Specific heat. Latent heat. Examples of coarse-grain free-energies
The specific heat, c(e,cp), and the latent heat (of fusion), X, are defined by

c(e,cp) - 3ee
bu(e,<p), x = ebu(eM ,0 - ebu(eM,0). (4.29)

By (4.8) and the relation 4>bu(eM>0) « ^b u(eM ,D,

c(e,cp) * eaef)
bu(e,cp) = -

x « eM{f)bu(eM,l) -

therefore, in view of (A2),

c(e,cp) > 0, X > 0. (4.31)

If the specific heat is constant, then the coarse-grain free-energy necessarily
has the form .
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cA(e) - z(cp)(e-eM)x/eM,
(4.32)

A(e) « e-eM - eln(e/eM).

with

2(0) * 0, 2(1) = 1. (4.33)

The following particular forms have been proposed for 3K<p) and z(cp):

2(cp) « cp2(3 - 2cp), (4.34)

with v>0 constant.17 A problem with this choice of z(cp) is that, since
z(-oo) = -oof at sufficiently high temperatures the global minimum of ^(e,(p,0), as
a function of <p, shifts from (p = l to a value cp<0, yielding a spurious change in
"most stable phase" from liquid to solid. For X/v sufficiently large an analogous
problem arises at low temperatures. This difficulty can be overcome by constrai-
ning18 cp to the interval [0,1] or by assuming that

z(cp) = 0 for (p < 0, z(q>) = 1 for cp > 1. (4.35)

(The discontinuities in z"(cp) at cp=O and cp=l do not lead to discontinuous coeffic-
ients in the resulting phase-field equations.)

A more general form of free energy is obtained by assuming that the bulk
free-energy is a convex combination:

4>bu(e,<p) « (l-z(cp))Ipa(e) • 2(cp)^(e) (4.36)

of bulk free-energies vj/a(e) and vp̂ (e) for phases a and p, where z((p) is consistent
with (4.33) and (4.35). Then, since 4>(OM»<P»0) * 0 at cp«O and cp*l, if we assume,
without loss in generality, that f|(eM,0,0) * 0, then (4.36) must necessarily have
the form

4>bu(e,cp) « (l-2(cp))F«(e) + z(tp)FHe) - 2(cp)(e-eM)x/eM, (4.37)

where Fa(e) and Fp(a) are concave functions with
1 The exchange energy is standard. This form for z(y) is discussed in (19,20,28).
18Cf. Fried and Gurtin 129]. See also Blowey and Elliott [30], who add to 5((p) the indicator
function Iio,il(<P) (which vanishes on [0,1] but is otherwise equal to • » ) .
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F(eM) « F'(eM) « 0 for F * F<* and F « F*. (4.38)

Taking Fa(e) « F*(e) « cA(e) reduces (4.37) to (4.32). The general case in which
c(e,cp) depends on both e and (p can involve inconsistencies if, as would be expec-
ted, the difference c(e,l) -c(e,0) in bulk specific heats has one sign for all e.
Indeed, in this instance F*(e)-Fa(e) is either: (i) >0 and strictly convex; or (ii) <0
and strictly concave. In either case a spurious (equilibrium) phase change will
occur at a temperature e if

FHe) - F«(e) « z(cp)(e-eM)x/eM (4.39)

(i.e., (j>bu(e,O) « +bu(e,D). In view of (4.31)2 and (4.38), for case (i) (4.39) is always
satisfied for some 0 > OM; in case (ii) for X sufficiently large (4.39) will r>e satisfied
for some 8€(0,eM). One would generally expect the spurious change of phase to
occur at temperatures outside the range of physical interest, but even so, from a
computational viewpoint such instabilities could result in erroneous results. This
can be avoided by requiring that the individual free energies be adjusted (in a
manner consistent with (A2)) so that FKe)« Fa(e) outside the range of interest.

4.5. Remark on a more general form of the exchange energy
One might wish to consider a temperature-dependent exchange energy $(e,cp).

In this case, the assumption that the exchange energy not have an associated
specific heat (and hence not effect bulk dynamics) yields the specific form

$(e,cp) * E(cp) - OS(cp), (4.40)

where E(cp) and S(cp) represent exchange functions for the internal energy and
entropy. The bulk internal energy and entropy then involve E(cp) and S(cp), as do
the excess internal energy and entropy. Arguments similar to those used to
establish (4.16) and (4.19) yield analogous results

qkin « enxsVm, Ttth « n^lVtpl^m-Ve, (4.41)

with Tixs=S(cp) + £fj(e,m)lV<p|2 no longer OCIVcpl2) at |Vcp|*O, at least for S(cp)*O. In
particular, for S((p)*O, Tith is unbounded at IVtpl* 0; for that reason we reject this
more general form of exchange energy. (Note that S(cp)*O leads to a singular
term |V(p|"1S(cp)m*Ve in the phase-field equation (5.1)2 of the next section.)
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5. PHASE-FIELD EQUATIONS
5.1. General anisotropic equations

Substituting the expressions in (4.15) and (4.19) for d and a into (2.22) and
(2.21)2 and using (4.9), (4.10), and (4.30)1 results in the generalized phase-field
equations

c(e,cp)e# • e{3(pfibu(e,(p)cp- + \{ J2fi(e,m))" - £div(?i(e,m)cp#Vcp) } =

div(K(e,cp)Ve) + b(e,m)(<pO2.
(5.1)

b(e,m)cp- { ( ) J ) }

These PDEs represent phase-field equations of great generality: they account for
the internal energy and entropy of the interface; they allow for an interface with
anisotropic and temperature dependent structure; and they allow for general
nonlinear constitutive behavior for the bulk material of each phase.

Note that, by (3.3), (3.5)2, (3.6) and (3.8)2>4, (5.1)! has the alternative form

c(e,<p)e- + ec^fiMe,tp)cp-

div(K(e,cp)Ve) + {2b(e,m)V2, (5.2)

while, by (4.23), (4.28) reads

m} « «2b(e,m)V. (5.3)

Together (5.2) and (5.3), which are equivalent to (5.1), form a basis for the
comparison with the sharp-interface theory given in Section 9.

Finally, to help ensure reasonable behavior of the foregoing PDEs we assume
that (cf. (4.31)):

(A6) the kinetic and gradient-energy moduli b(e,m) and v{i(e,m) are strictly
positive for all (e,m); the conductivity tensor K(e,cp) is positive-definite for
all (e.cp).

5.2. Isotropy
If the material is isotropic,
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K(e,cp) * k(e.cp)l, b(e,m) « b(e), ^(e,m) « Zp(e), fi(e,m) = r\(e), (5.4)

and, since f\{B) * -^'(e), div{Ij)(e)V(p}* vj;(e)A<p- fi(e)Ve*Vcp; hence (5.1) reduce to

c(e,cp)e-

b(e)cp- «

These PDEs, while restricted to isotropic materials, are otherwise quite general.
Standard simplifying assumptions are that the specific heat c and conduc-

tivity k are constant and independent of phase. Granted these assumptions, (5.5)
take the simple form

div(k(e,cp)Ve) + b(e)(tp-)2, . c

vo.

ce- - e{z(cp)'x/eM - £(«2Ti(e))# + £div(?i(e)(p-Vcp)} - kAe + B(e)(cp-)2,

b(e)tp- = Ip(e)Acp - $'((p) - z ((cp)(e-eM)x/eM "

where we have used (4.32).
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6. REVIEW OF THE SHARP-INTERFACE THEORY. ROUGH COMPARISON OF THE
DIFFUSE- AND SHARP-INTERFACE THEORIES

We here present a rough comparison of the the basic laws of the diffuse-
interface theory developed here with those arising in the sharp-interface theory
of Gurtin [22] (see also [23-26]). For convenience, we rely on the abbreviations

DT « diffuse-interface theory, ST « sharp-interface theory.

6.1. Review of the sharp-interface theory
We consider a body whose phases a and p occupy regions separated by a

sharp interface Z*Z(t) that evolves with scalar normal-velocity V^ in the direc-
tion of its unit normal field m^. Let R, with outward unit normal n, be a statio-
nary control volume, write

Q(t) = *(t)nR (6.1)

for the portion of J& in R, and let

Pj « 1 - m^®m^,

(l-(n-m^)2)"*P^nf (6.2)

UdQ « -(l-tn.m^rttn.m^Vg

(cf. (3.9), (3.13)), so that P^ is the projection onto Zt vdQl a vector field tangent to
Zt is the outward unit normal to the boundary curve 3Q, and UdQ is the scalar
normal velocity of dQ in the direction vdQ. Then balance of energy and growth of
entropy for R have the form

{ / e d v + J e d a } ' - JeUdQdl « - Jq-nda + JV^c.vd Qdl,
R Q dQ dR dQ

(6.3)
{jTldv + Jsda} # - JsU^dl > - J(q/e)-nda.

R Q dQ SR

Here B is the temperature with

B assumed continuous across JZ> (local equilibrium); (6.4)

e, r\, and q are the bulk energy, entropy, and heat flux; e and s are the energy
and entropy of the interface; and c, a vector field tangent to Zt is the surface
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shear. These laws are supplemented by a configurational force balance: writing

v|> « t - er\, f « e - es (6.5)

for the bulk and interfacial free energies and1 9

C « fP^ + m 2 ® c (6.6)

for the interfacial stress, this force balance has the form

JCvdQdl + Juda - 0 , (6.7)
dQ Q

with TT the total configurational force on the interface. A consequence of (6.7) is
the identity

^ ^ / ^ ^ / ^ ^ a (6.8)
dQ Q

for the working term in the energy balance, where g° represents differentiation
with respect to t ime following the normal trajectories of the interface (cf. (3.6)).

Using (6.5) and (6.6), we can express (6.3) alternatively as (cf. [25])

{ J e d v + J e d a } ' = - Jq-nda + jQUd Qdl + JCvd Q .ud Qdl,
R Q SQ 3R dQ

(6.9)
{jTidv + Jsda}# > - J(q/e)-nda + J(Q/e)UdQdl,

R Q dR SQ

in which Q s Os is a scalar configurational heating for the interface (cf. (2.37)) and
udQs ^rn^"l"^dQvdQ *s *^e intrinsic velocity of dG.

The constitutive theory for the interface begins with f, s, c, and n*m^ as
functions of B, m^, and V ;̂ compatibility with the local dissipation inequality
that follows from (6.3) and (6.7) then yields reduced constitutive relations, which,
when restricted to linear transition kinetics, have the form

is a surface tensor and hence a linear transformation from tangent vectors into
we extend C to R3 by requiring that ~
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( 6 1 0 )

with b«b(e,m^)>0. (More generally, b*b(e,m^,V^); we neglect the dependence of
b on V^ to be consistent with our assumption (A5), which precludes a nonlinear
dependence of the kinetic modulus b of DT on cp*. (Cf. footnote 13.))

The integral balance laws and reduced constitutive equations yield the local
interface conditions

fK^ + div^c « bVz,

where K̂  is the total curvature of Z, div^ is the surface divergence on >8t and [g]
denotes the jump in a field g across J& (p-side minus oc-side). The relations (6.11)
represent the free-boundary conditions of ST; standard approximations reduce
(6.11) to the more conventional conditions (1.1) (cf. [22]).

The bulk theory is classical. Constitutive equations are given for each phase

(6.12)

with vpy strictly concave and K* positive-definite. These with the energy equation
in the form

OTT - -divq (6.13)

yield parabolic PDEs to be satisfied in the separate regions occupied by phase a
and phase p.

The production of entropy in this theory consists of bulk contributions Ta and
f* arising from heat conduction in each phase and an interfacial contribution Tz

generated by accretion, with

H « e-2Ve-K'(e)Ve, r̂  * e^bie.m^iV^. (6.14)
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6.2. Preliminary comparison of DT and ST based on intuitive considerations
Proceeding without the benefit of precise assumptions concerning the relative

magnitudes of the various quantities appearing in DT, we now compare the basic
laws of DT with those of ST. In Section 8, formal asymptotics will be used to make
these identifications more rigorous.

Consider DT. Let R be a stationary control volume. Then, by (3.3), the last of
(4.10), and (4.23)lt

(p#t«n * -t24>(e,m)Vnvn • VT-n. (6.15)

Thus (4.10), (4.16), and (4.23) imply that

_qkin.n + cp#£.n = - (exs - J)Vm-n
(6.16;

-(qk i n /e)-n = -T)xsVm-n,

and, since T is tangent to uniformity surfaces (cf. (4.23)), we may use (3.13) to
rewrite the basic laws (2.1) and (2.2) for DT in the form

- Jq t h .nda + JVT-vdA - JJUdA,
SR SR 8R SR

(6.17)
' - J V s U d A > - J ( q t h / e ) - n d a ,

R dR SR

where

dA » (n-v)da, n-v « (l-(n-m)2)*, (6.18)

with V, defined in (3.9), the outward unit normal to the curves 'U that mark the
intersection of the uniformity surfaces with 9R. The measure dA represents the
area on 9R projected onto the plane perpendicular to v. For a thin interfacial
layer consisting of closely packed uniformity surfaces, dA may be written as the
product of a measure dl representing arc length on the curves *U and a measure
representing integration across the layer. Thus the basic laws (6.17) of DT have
the same structure as the corresponding laws (6.3) for ST provided:

(i) sbu, nbu, and qth are identified with the corresponding bulk fields of ST;

(ii) the integrals of exs, T)xs, and T across the layer are identified with e, s, and



-29-

c of ST;

(hi) V, U, and v are approximately constant across the layer and identified with
V * ' UdG' a n d ^dQ o f S T '

(iv) the integrals of ebu, T|bu, q th , and J across the layer are "small"; and

(v) exs, T)xs
f T, and J are "small" away from the layer.

Consider next the working term involving the integral of V f - v d A = VT*nda.
Since T is tangent to uniformity surfaces, (3.8) yields

JVT-nda - J(VdivT + T.m°)dv. (6.19)
SR R

Further, by (3.5) and (4.26), we may write the normal configurational force
balance (4.28) in the form

+XSK + divT + m-fxs + div(Jm) - 0. (6.20)

Since (Vm)Tm = 0, (3.8) and last two results yield the power identity

- JJUdA = -J(4>XSKV + T-m° + Vfxs .m + J{° /8)dv, (6.21)
SR SR R

which has the same structure as its counterpart (6.8) of ST if, in addition to (i)-
(v),

(vi) m and K are approximately constant across the layer and identified with
mz and K̂  of ST;

(vii) the integral of fxs across the layer is identified with IT in ST;

(viii) the integral of J(JVt) across the layer is "small"; and

(ix) f x s a n d J U ° / « ) are "small" away from the layer.

The conclusions based on (i)-(ix) are reinforced by a comparison of (4.22) and
(6.6), which motivates:

(x) identifying the integral of Cxs across the layer with the interfacial stress C
of ST.
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7. SCALED EQUATIONS. MATCHED ASYMPTOTICS (PRELIMINARIES)
7.1. Scaling

Our goal is a simple scaling with a single small parameter 8 such that the
gradient free-energy and kinetic modulus are 0(6), the bulk free-energy and
conductivity are 0(1), and the exchange energy is OtS"1).

In scaling the basic equations it is most convenient to label the unsealed
fields (all of which, aside from cp, carry dimensions) with an asterisk and to
reserve letters without asterisks for dimensionless quantities. In particular, we
now write x" and f for the position vector and the time, e"(x\f ) and ip*(x\r)
for the temperature and the order parameter, ^bu"« vj;bu"(e#,(p*) for the bulk
free-energy, and so forth. We let |i and K denote scale factors for the bulk and
gradient constitutive functions, respectively; for example,

M M,0), K = max ^"(ew.m). (7.1)
m

We consider a process and write L for a characteristic length and T for a charac-

teristic time associated with that process, we assume that \i and K scale with

dimensionless modulus

8 = K/UL2 > 0 (7.2)

small, and we introduce the dimensionless independent and dependent variables

x = x-/L, t « r /T, e(x,t) - e-(x#
fr)/eM . <p(xft) = cp*<x\r), (7.3)

and the constitutive functions

K(e,cp)

b(e,m)

where the quantities without asterisks in (7.3) and (7.4) are of 0(1) in 8. This

scaling yields
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( 7 5 )

where

ebu « gbu(e>(p) , 4,b

b̂u s f|bu(©,tp) - -de

(7.6)

and

q th = -K(©,q>)Ve. T = -Ji263m^(©,m), J - 6"i$(cp) - $ 6«2lH©,m). (7.7)

The basic laws (6.17) were written for the original quantities, which were
dimensional, so that the terms in (6.13) now carry asterisks. If we use (7.3)-(7.5)
to convert these laws to nondimensional form we find, with the aid of the
relations V" = LV/T and U* • LU/T, that, after a common factor of uL3/T has been
cancelled from each term, (6.17) remain valid as is (i.e., without asterisks), but
with the underlying fields given by (7.6) and (7.7).

7.2. Scaled PDEs
Granted our scaling, the PDEs (5.1) have the form

©fibu(©,q))- + $6©{(«2fj(©,m))' - div(TJ(©,m)q>Tcp)} =

div(K(e,cp)V©) + 6b(©,m)(cp')2,
(7.8)

6b(©,m)<p* » 6div{vp(©,m)Vcp + ${3m4/(e,m)) +

- 3<p (j»bu(©,(p) - S-iJ'fq)) + j8Ti(©,m)Vcp.V©,

while (5.2) and (5.3) can be written as
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° - «2T)(e,m)KV} =

div(K(e,cp)Ve) + 8«2b(e,m)V2,
(7.9)

))K - i6div{t2dm^(e,m)}

6-1div{($(cp) - j62t24J(e,m))m) = 8«2b(e,m)V.

Our goal is to obtain the asymptotic form of the theory for small 6. In this regard,
the PDEs (7.8) are convenient away from the layer, but within the layer (7.9) are
generally more useful, as they contain explicit information regarding the geome-
tric structure of the layer.

7.3. Equivalent sharp-interface constitutive equations
In Sections 8 and 9 we will show that the diffuse-interface theory is asymp-

totic to the sharp-interface theory defined by the following constitutive functions:

bulk constitutive functions

fibu(ef0), fi*(e) = fibu(e,l).

ebu(e,0), zHe) - ebu(e,l),

K«(e) « K(e,0),

interface constitutive functions

f(e.rn) J
o

s(e,m) « -3ef(e,m), (7.11)

c(e,m) * -9mf(e,m) f

e(e,m) * f(e,m) - eaef(e tm) f

b(e,m) « b(e,m)f(e,m)/4J(e,m).

The bulk relations are motivated by our previous discussion and are consistent
with the bulk thermodynamic requirements T}r(e) = - 3$ 4>r(O),
ey(e) « ^r(e) + eSe +y(e). Our choice of interfacial free-energy f(e,m) and kinetic
modulus b(e,m), while not at all obvious, will be clear from the ensuing
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asymptotics; given f(e,m), the choices of s(e,m), c(e ,m), and e(e,m) are
predicated upon (6.10)^3 and (6.5)2.

An essential ingredient in the conversion of gradient moduli in the diffuse
interface theory to interfacial quantities in the sharp interface theory is the
function

* (7.12)F(0.m) -

indeed

f(e.m) -

s(e,m) -

c(e,m) «

e(e,m) «

b(e.m) =

(4»(©,m))-* J(25(cp))*dcp;
0

F(©,m) ^(©ini);

- jF(©,m) Sjn^C^im),

F(©,m){t(e.m)-i©3eg

F(©,m)b(©,m).

(7.13)

We will refer to F(e,m) as the conversion modulus; the dimensional counterpart
of F(e,m) carries units of (length)"1.

Note that, since T} = -c>e4> and e= 4> + Sri, the conversions for entropy and
internal energy are S=^FTI and e=F(e +JeTi); thus, surprisingly, the interfacial
internal energy depends on the gradient moduli for both internal energy and
entropy.

7.4. Expansions
We assume that the process under consideration consists, at each time t, of

an interfacial layer £(t,6) and regions Fa(t,6) and Pp(t,6) composed, respectively,
of bulk material in phase a (cp«O) and bulk material in phase ^ (cp«l). We assume
that £(t,6) contains the set of x with cp(x,t) in the spinodal interval for $ (cf.
Section 4.1), and that the thickness of £(t,6) tends to zero with 8; precisely, we
assume that the limit

Z(t) « C(t,0+) (7.14)

exists with 8̂(t) a smooth surface contained in £(t,6) for all small 6.
We focus on a stationary control volume R that—over the course of some

time interval—contains material from both phases, and we let
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Q(t) = Rn*(t), R'(t) = RnP'(t,O+), OR)'(t) « SRnR'(t), * = a,p. (7.15)

When we compare the asymptotic form of the basic laws for DT with those of ST,
^ will play the role of the interface, Q the portion of the interface in R, and R'(t)
and OR)* the portions of R and 3R occupied by phase-* material.

The diffuse nature of DT precludes a definitive boundary between the interfa-
cial layer and the bulk regions, and for that reason Rn£ is not presumed disjoint
from RnlP* (Jf=ocfp). In the asymptotics we will consider inner and outer expan-
sions of the basic fields, with the outer expansion valid in the regions RnP*, the
inner expansion in Rn£; the regions (Rn£)n(RnPy) of overlap will represent sets
in which the inner and outer expansions agree, a requirement that gives rise to
matching conditions.20 Of course, R is the union of Rn£ and the regions RHP*,
and therefore

R\£ C Rn(P«UPe). (7.16)

We write d(x,t) for the signed distance between x and Q(t) with d(x,t)< 0 in
Ra(t) and d(x,t) >0 in R*(t). Then

mz = Vd, V^ = -d' (7.17)

represent a unit normal and corresponding normal velocity for Z. It is convenient
to define a function C(x,t) through

C(x,t) = x - d(x,t)m^(x,t), (7.18)

so that C(x,t)c^(t). We assume that d(x,t) is smooth within Rn£(t,8); then, for
fixed t, the mapping x»-> (c(x,t),d(x,t)) is one-to-one. Further, m^ and V^ are well
defined and, as functions of (d,C), are independent of d: m ^ m ^ C t ) , V^«V^(c,t).

Within the layer we stretch the coordinate normal to Q(t) by letting

r(x,t) * 6-1d(x,t). (7.19)

and, consistent*with this, we assume that within R the thickness h(6) of £(t,8)
approaches zero with 8, but at a slightly slower rate; precisely, we require that

h ( 6 ) - 0 , 8-*h(6) - +~, 6^2(8) - 0 (7.20)

20Cf. the discussion of Penrose and Fife [31], Section 3.
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as 6-*0, so that the stretched coordinate r varies from -«> to +«> within the layer.
For the fields u * 0 and u * cp we introduce an outer expansion

u(x,t) * uo(x,t) • Su^x.t) • O(62) (7.21)

assumed valid in RnPa(t,8) and Rnlpe(t,8), and an inner expansion

u(x,t) « uo(r(x,t),C(x,t),t) + Su^Hx.tJ.Cfx.O.t) + O(62) (7.22)

assumed valid within Rn£(t,6). Defining uo*(ff,t) and uo*(e.t) on Q(t) by

iioWx.tJ.t) « lim uo(x,t), uo*(c(x,t),t) * uo(±«>,C(x,t),t), (7.23)
r(x,t)-*0±

and writing [g ] s g+-g", we then have the 0(1) matching conditions

u0
± = ii0±, [u0] = [u0]. (7.24)

We write V̂  for the gradient on Z\ in the variables (C,r), the derivative with
respect to C holding r fixed may be identified with V .̂ For $ a scalar function and
v a vector function, V^$ = P^v^» v ^ v s (Vv)P^, where P^ is defined by (6.2)^ In
particular, by (7.17), ( V m ^ m ^ (VVd)Vd = JVdVdl2) = 0, so that the curvature ten-
sor Lz = L^(C,t) = - V^m^ for Z is also given by

* *- (7.25)

Further, by (7.17) and (7.18),

Ve « P^ - dLj; (7.26)

and therefore

Vv « 6-Hdv)®m • (Vv)( l d L ) ( 7"2 7 )

7.5. Preliminary estimates
Within the layer ldl<2h(6); thus

d « O(h(8)), (7.28)
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and, appealing to (7.22) and (7.27), we have the estimates

Vu « 8-1Oru0)m^ + V^u0 + OrUjJmj + 0(h(6)). (7.29)

Wu *

for u«cp and u-e . (Some care is needed in establishing the first estimate. The
partial derivative of u(r,C,t) with respect to t is not defined, as C^^(t), but we
can still write u'(r,C.t) as 6"1Oru)d* plus an 0(1) term; namely the derivative of
u(r,C(x,t),t) with respect to t holding x and r fixed.)

Using the outer expansions of e and cp in (7.8)2, we find that cp0 must satisfy

S'(qp0) - 0, (7.30)

and hence must be constant in RnP a and RnP^. By hypothesis, the constant
values of qp0 on either side of the layer lie outside the spinodal; we therefore con-
clude from (4.3) and (7.30) that

qp0
 s 0 in RnP a , cp0 = 1 in RnP*, (7.31)

and $(cpo) s 0; thus and by (7.6), (7.7), and (7.30), we have the following estimates
in RnP a and

s 0(62), ^xs>cxs>T1xs fTf j « 0 ( 6 ) e ( 7 # 3 2 )

Further, by virtue of (7.31), the matching condition (7.24) requires that cp0 satisfy

cp0 —> 0 as r -> -«>, cp0 —* 1 as r —> • » , (7.33)

A tacit assumption of the analysis presented thus far is that Vcp not vanish
within £ , for otherwise m and V would be undefined therein. Bearing in mind
(7.33), cp0 must therefore be strictly increasing on (-«>,+«>), so that

I * 8-iOrtp0) + 0(1) > 0; (7.34)

we may therefore conclude from (3.3) that
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m + 0(6), V - V^ + 0(6),

and hence, by (3.4) and (6.2)!, that

P - P j + 0(6).

(7.35)

(7.36)

Our next step will be to establish the estimates

0(h(6)), m 0(h(6)), (7.37)

with Lg and L, respectively, the curvature tensors for & and for uniformity sur-
faces, m° the normal time-derivative of m following uniformity surfaces, and
m^ 0 ^ 5 =-V^V^ the normal time-derivative of m^ following -8. A consequence of
(7.37)j is the estimate

0(h(6)). (7.38)

To verify (7.37) we note first that, since dr
v * m^ and § = V^ yields

= 0 and 9rV^ = 0, (7.24) with

-Vd' 0(h(6))

On the other hand, by (7.27)2 with v = Vtp and (7.25),

0(6-^(8)).

The result (7.37^ follows from (3.8)lt (7.38), (7.36), and (7.40).
Consider (7.37)2. In view of (3.3), (3.7)!, and (3.8),

0(h(6)).

xn"

and, by (7.27)lf

* - cp-(VV<p)m},

0(8-^(6)),

(7.39)

(7.40)

(7.41)

i 7 A 2 )
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Since V«-tpVt and d#«-V^, we may use (7.39)2, (7.35)2, and (7.42)2 to conclude
that

(7.43)

(7.34), (7.35), (7.42)lf and (7.43) yield the desired estimate (7.37)2.
Two additional estimates that we will find useful are

r / { = 0(1), $° « $o U ) + 0(6), (7.44)

provided $ is independent of r. To verify the first of (7.44), we precede as in the
proof of (7.37)2 using, in place of (7.41), the identity

- - tp-(VVcp)m} (7.45)

(cf. (3.3)2 and (3.8)4). The second of (7.44) follows from (7.35) and the identities

5° - $# + Vm-V$, $°W) - $• + V^myVS. (7.46)

Finally, we assume that %{\) crosses dR transversely; then, granted smooth-
ness,

Im^nl is bounded away from 1 (7.47)

and the outward unit normal vdQ to dQ and the scalar normal velocity UdQ of 3Q
in the direction vdQ are well defined and, in fact, given by the relations (6.2).
Further, in view of the discussion in the paragraph containing (7.47), the fields V
and U defined in (3.9) and (3.13) and used in (6.17) are well defined in 3Rn£ and
there satisfy

u(x.t) « v^Ctx.O/t) + 0(6), U(x,t) « UdQ(c(x,t),t) • 0(5). (7.48)

7.6. Sharper estimates
The coordinates (r,C,t) are not convenient, as C must lie on ^(t), a constraint

that precludes differentiation with respect to t holding C fixed. This difficulty may
be circumvented by fixing a time t and using C€>&(t) as reference coordinates for
the interface. Precisely, we define a function z(C,t) that associates with each time
t and each C€,8(t) the point C*z(C,t) on Z(t) obtained, at time t, by following the
normal trajectory emanating from C at t. Then, defining v(C,t) * V^m^, z(C,t) is
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the solution of the system

3tz(C.t) * v(z(t,t),t), z(C,t) - C. (7.49)

For our purposes it suffices to construct the function z locally in the variables
(C,t). Granted this and granted sufficient smoothness, C*z(C,t) will be, for t fixed,
smoothly invertible in C; we write C * z(C»t) to describe the corresponding inverse
function.

Let T(C,t) denote the tangent plane to Mt) at C€,8(t). We write $ for the
surface gradient on Z(t). Then ^z(C,t) is an invertible linear transformation from
T(jf.t) onto T(C.t). C-z(C.t); and V^z(C.t) « {tfz(e.t)}-1.

Finally, using the function z we can express any function $(r,C,t) as a
function $(r, C,t):

i(r,C,t) « $(r,z(C,t),t). (7.50)

Since C can be considered a function of (x,t) through (7.18), so also can C-'

C(x.t) « z(C(x,t),t). (7.51)

Using the functions C(x,t) and C(x,t) we can define, via (3.6), the time-derivatives
C° and C° following the normal trajectories of uniformity surfaces. By (3.6),
(7.17), (7.18), (7.26), and (7.51),

( 7 ' 5 2 )

Thus, since (V^z)C° * (V^z)P^C°, and, since m^ is independent of r so that
m * 0(1), we may use (7.28) and (7.36) to conclude that

O(h(6)), C° « O(h(6)). (7.53)

It is convenient to extend the normal time-derivative $°W) following % to
functions $(r,C.t) that depend nontrivially on rt by considering this derivative as
a partial derivative holding r fixed; in view of the transformation (7.50) and the
definition of z:

9 ti(r,C,t), C « z(C,t). (7.54)
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The derivative $° following uniformity surfaces is more complicated:

$°« s^Oyiid0 + (tfi)-c0 + a t i . (7.55)

As we shall see, if § is an 0(1) field, then (7.55) leads to the estimate

$ $ O(h(S)). (7.56)

so that, in particular, i °« 0(1).
Our verification of (7.56) begins with the estimates

I * 6-1(drip0){l + 6Ortp0)-
1Ortp1)} + O(62),

m - m^ + SOj-tpo^Vjjpo) + O(6h(6)), (7.57)

V = V^ - 80rcp0)-
1(dtipo) + O(6h(6)).

The first of (7.57) follows from (7.27)^ while (7.57)a and (7.27)i yield (7.57)2. Note
that, as a consequence of (7.57)2,

m-m^ « 1 + O(62). (7.58)

To establish (7.57)3, we note that, by (7.58) and since d°*d*+Vm-Vd,

d° * (m-m^V - V^ = V - Vg + O(62). (7.59)

Next, since <p° represents a time derivative following level sets of (p, ip° = 0; thus

(7.60)

(7.53)2, (7.59), and (7.60) yield (7.57)3.
The estimate (7.56) follows from (7.55), (7.53)2, (7.57)3, and (7.59).
Next, by (7.27)lf

0(1) - 6-2Or(p0)
2 + 26-1(dr(p0)Or(pi) + 0(1) (7.61)

and, in view of the comment following (7.56),
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(7.62)

7.6. Asymptotic continuity of temperature across the interface
We now show that:

[e] « 0(8). (7.63)

Consider the energy balance (7.9)1 and restrict attention to the layer. By (7.27)
and (7.56), for 0(1) fields v and 8, divv « S ^ O ^ m ^ + 0(1) and $°«0( l ) . Thus,
since t * OfS"1), while m, V, K, and t°/t are 0(1) (cf. Section 7.5), we may use the
inner expansions for 0 and cp in conjunction with (7.29) to conclude that

dreQ) « 0, where kteo.cpo.m^m^Kteo.^m^. Thus

k(eo,tpo,m^)areo « § (7.64)

with $ independent of r. Assume that 3>>0. By (A6), K(eo,cpo) is positive definite;
thus k(eo,(po,m-8)>O and 3re0>0. It is tacit that eo(r,C,t) and (po(r,C,t) are bounded
functions of r (cf. (7.23)). Thus so also is k(eo,cpo,m^) and we may conclude from
(7.23) that the integral of the left side of (7.64) from r = -©o to r - + » is bounded
by the maximum of k(eo,(po,m^) times [e0]. But the same integral applied to the
right side of (7.64) is +«>, as § independent of r. A similar contradiction arises
when $ < 0. Thus §=0 and

5re0 = 0, (7.65)

whereby e0 must be independent of r. Therefore, [e0]«[e0] « 0, and (7.63) follows.
By virtue of (7.65), we note that

e° « (eo)°W) * 0(h(8)) « e o U ) + 0(h(6)). (7.66)

7.7. Form of cp0 within the layer
Using the inner expansions of B and cp in (7.8)2, we find, with the aid of (7.29),

(7.35), and (7.65), that

4J(eo,m^)Sr3rcpo - $'(cp0) * 0. (7.67)

In view of the assumed nature of i|> and $ (cf. (A6) and the discussion containing
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(4.2)), we may conclude that the system (7.33), (7.67) has a unique solution.
Further, this solution satisfies the energy-partition relation

^ r p o (7.68)

and is hence of the form

<Po(r,C,t) **(y), y * r/(+(eo,mj))*. (7.69)

with $ the solution of

V * (25(40)*. $(-~) « 0, 4>(+~) « l, (7.70)

so that

drcp0 > 0 (7.71)
>

and, consistent with the discussion immediately preceding (7.34), cp0 increases
monotonically from 0 to 1 as r varies between -«> and +«>. Further, (7.69), (7.70),
the conditions <J>'(±«>) - 0, and the fact that $($) and $•($>) vanish at 0 = 0,1 imply
there is a constant A > 0 such that

arV0(r.C.t) « O(e-Alrl) as lrl->~; (7.72)

SrVo^tC.t), as a function of r, therefore belongs to L2(-«>,«0. In fact,

Jl3rcp0|2 dr - F(eo,m^), (7.73)
— oo

an identity that follows from (7.12), (7.69), and (7.70).

7.8. Estimates for the conversion modulus

In this section we will establish two estimates for the conversion modulus: let

g « iarcp0l
2; (7.74)

then, as 6-»0,
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F(eo,m^) * Jgdr • o(l),
-h(6)/6

(7.75)
h(6)/6

\ Jg°dr
-h(6)/6

The first of (7.75) is a direct consequence of (7.20) and (7.73).
To verify (7.75)2 we first note that an argument similar to that following

(7.72) shows that Otg), as a function of r, belongs to L2(-«>,oo), and that, by (7.73)
and (7.50),

F(e0.m^)oU) * /°Otg) dr. (7.76)
— oo

Let u« dr{(sr$o)(c>t$o)} so that, by (7.33),

+00

Judr = 0; (7.77)
— OO

then, using (7.56),

-- 2Or(p0)Or3t(p0) « (dTyo)(drdtyo) - Orc)r$o)(5t$o) + u

= \Z° + u + O(h(6)). (7.78)

The result (7.75) follows upon integrating (7.78) from -h(6)/6 to h(5)/6 and using
(7.20)23, (7.76), and (7.77).
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8. STRUCTURAL CONSONANCE OF THE BASIC LAWS IN THE DIFFUSE- AND SHARP-
INTERFACE THEORIES

We now show that

the basic laws (6.17) of energy balance and entropy growth
for the diffuse-interface theory are formally asymptotic
to their counterparts (6.3) of the sharp-interface theory

provided we use, for ST constitutive equations, the response functions defined in
(7.10) and (7.11). In fact, we will show that, as 6->0:

(i) our definitions of bulk and excess free-energy, internal energy, and entropy
yield the correct asymptotic form for the free energy, internal energy, and
entropy of R:

Joooc(e)dv + JCoHe)dv + o(l) for GO = y\>,z,r\,
R R« R*

J c o x s d v = J w C e . m ^ d a + o(l) for GO = ty,z,T\, w = f,e,s;

(ii) our identification of qth as the bulk heat-flux yields the correct asymptotic
form for the heat and entropy flow into R:

Jqth-nda - - jK«(e)Ve-nda - jK*(e)Ve-ndv
£>R OR)« OR)* ( 8 2 )

J J
dR (dR)«

(iii) the forms proposed for the kinetic heat-flux qkin and for the working of the
microforces yield the correct asymptotic forms for the working on—and the
fluxes of free energy, internal energy, and entropy into—the control
volume R:

JVT-vdA - JVjcCe.m^- i^Qdl + o(l)
SR 3Q ( 8 3 )

JcoxsUdA - Jw(e,m/8)UaQdl + o(l) for co * <J>,e.m, w « f.e.s;
3R SQ

(iv) the field J is asymptotically insignificant:
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JJUdA * o(l). (8.4)
SR

Further, not only is the total working of DT asymptotic to that of ST (in the
sense of (iii) and (iv)) but, in addition:

(v) each term of the decomposition (6.21) of the DT working is formally
asymptotic to its ST counterpart in (6.8):

J>xsKVdv
R Q

Jf-m'dv « Jcte.m^'m^'da + o(l),
R Q (8.5)

JVfxs-m dv
R G

JJ(«°/{)dv
R

where m^" is the a normal time-derivative of m^ following -8, while m° and
t° are normal time-derivatives of m and { following uniformity surfaces.

The result (8.5)3 motivates the choice (7.11)5 for the kinetic modulus.
To establish the bulk estimates (8.1)! and (8.2), we use the outer expansion of

(p in the relations (7.6)12 and (7.7)! giving

b p 0 ) + 0(8), qth = -K(e,cpo)Veo + 0(6) (8.6)

in RnPa(t,6) and in Rnpe(t,6); thus, since e, V©, and tp are bounded on R uni-
formly in 6 (cf. (7.65)), and since the volume of Rn£(t,S) and the area of

'cJRnJKt.S) are bounded by the thickness h(8) of the layer, we may conclude from
(7.15), (7.20), and (7.30) that (8.1)! and (8.2) are valid.

Next, by (7.6), (7.7), (7.29), (7.68), and (7.35),

wx* « (6F(©0,m¥8))-iw(©0,m#8)l3r(p0l
2 + 0(1) for co « <\>,Z,T\, W * f.e.s,

T « (6F(eo.m2))-ic(eo,m<8)iaripol2 + 0(1). (8.7)

J - 0(1)

within R n t , and (7.35). (7.32), and (8.7) imply (8.4).
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The estimates (8.1)2 and (8.3) remain to be verified. With this in mind, we
establish two identities:

jF(eo.in8)pda
Q ( 8 8 )

dA « ^

OR)n£ so

in which dA is the measure (6.18)!, F is the conversion modulus (7.12), and p is a
scalar-valued field independent of r and of 0(1) in 8. (Bear in mind that m^ and
©0 are independent of r.)

Since the integrand g=l3r<p0l
2p of (8.8) is bounded, we may use (7.20) and

(7.72) to conclude that

h +oo
Jgdv = J Jgd(8r)da + 0(h2) = 6 j Jgdrda + o(6),

Rn£ Q -h G -oo ^ 9j

h +oo
JgdA = J Jgd(6r)dl + 0(h2) = S j Jgdrdl + o(6),

(£>R)n£ SQ-h SQ-«

and (8.8) follow from (7.73).
Next, by (7.16) and (7.32),

Jcoxsdv + o(l), (8.10)

and (8.1)2 follows from (8.7) and (8.8)!.
Consider (8.3). On the subset of SR outside of £ we use (3.13), (6.18), and the

fact that T-m = 0 to write u>X8UdA«- wxsVm«nda and Vx-vdA = Vx-nda; then
since V and m are there 0(1), while T and coxs are 0(6) (cf. (7.32)),

JwxsUdA - JwxsUdQdA + o(l). JVx-vdA - JV^c-VaQdA + o(l), (8.11)
3R OR)nC £>R

where we have used (7.35) and (7.48). The estimates (8.3) follow from (8.7), (8.8)2,
and (8.11).

Finally, to establish (8.5)1.3 we use the inner and outer expansions appro-
priately in (7.6)3, (7.7)2(3, (4.26), (7.6)1(2, (7.4)6. and rely on (8.8)!; (8.5)4 follows
similarly upon noting that IVI «0(l) (cf. (7.44)j).
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9. ASYMPTOTIC CONSONANCE OF THE PDES OF THE DIFFUSE-INTERFACE THEORY
WITH THE PDES AND INTERFACE CONDITIONS OF THE SHARP-INTERFACE THEORY

We now show that

the PDEs (7.8) (or equivalently, (7.9)) of the diffuse-interface
theory are formally asymptotic to the bulk PDE (6.13) and
the interface conditions (6.11) of the sharp-interface theory

provided we use, for ST constitutive equations, the response functions defined in
(7.10) and (7.11).

Our analysis will use the framework of Section 7.4, but with R replaced by
the region Q under consideration. Thus, as the thickness h(6) of the layer £(t,6)
decreases to zero with 6:

ZM * £(t,0+), QHt) = P'(t,0+), (9.1)

so that Z(t) and Q*(t), respectively, represent, for the asymptotic sharp-interface
theory, the interface and the portion of Q occupied by bulk material of phase tf.

Specifically, we will show that the PDEs of DT yield, asymptotically as 8-»0:

(i) the bulk energy-balance

- div(K'(e)Ve) + o(l) (9.2)

in Q* for each phase tf= a,p;

(ii) the interfacial energy-balance21

^ ^ (9.3)

and the normal configurational force-balance

(9.4)

on Z, where the normal time-derivative in (9.3) is that following J&.

To establish (9.2), we restrict attention to QnP*(t,6) and observe that, by
(7.30) and (7.10), the bulk terms of (7.8)! satisfy
2 1 H e r e { V < e ) l - TIP<*) - T>a(e), and so forth.
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- ©?!»(©)• + 0(8), div(K(©,<p)Ve) « div(K'(©)V©) + 0(6), (9.5)

while the remaining terms of (7.8)i are 0(6); hence (9.2) follows.
We turn now to the derivation of the interface conditions (9.3) and (9.4),

which are derived by integrating (7.9) across the layer. The estimates

m « mz + 0(8),

V - Vj + 0(8),

L - 1^ + 0(h(6)),

K = Kg + 0(h(8)), ( 9 6 )

{2 = 8 -2 g + 2S-1Or<Po)(dr(p1) + 0(1), g * Ortp0)
2.

= 8-2g° H

which were established in Section 7, will be used repeatedly, often without refe-
rence, as will the conditions tf>0(-°°,C,t) - 0, tpo(+«>,C.t) - 1 and the r-independence
of ©o. v * . m£> a n d K<8-

Consider (7.9)^ Using the inner expansions of e and tp, (7.29), (7.27)2, and
(7.65), we have the estimates

©T|bu(©,cp)* - - S-ieoV^Ti^eo.tpo)) + 0(1),
(9.7)

div(K(e,cp)Ve) « 6-1

so that, by virtue of (7.10) and (7.29),
h(6)
J©Tibu(©,(p)'d(6r) -

-h(6)

Jdiv(K(©.tp)V©)d(6r) - [K»(©)V©]-m-8
-h(6)

Next, (7.46)2 and (7.65) yield

* 0(h(6))

0(h(8)). (9.9)
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Thus and by (7.75),

h(6) _
JSet2Ti(e,m)od(8r) * B

-h(6)
(9.10)

h(6) _ _
J8en(e,m)(t2)°d(6r) = 2e0Ti(e0,m^)F(eo,m^)oU) + o(l),

-h(6)

and an argument analogous to (9.9) allows us to replace e0 on the right sides of
(9.10) with e. Thus, recalling (7.13)2 and the relation T^-Se^,

h(6) _
J 6e{{2n(e,m)° + n(e,m)(«2)0} d(6r) * 2es(e,m^)° + o(l), (9.11)

-h(6)

where, as in (9.3), the time derivative on the right side of (9.13) is that following
&. Further, (7.75)lf (9.6), and the relation T^-de^ yield

h(6) _
J 6e{2n(e,m)KVd(8r) « 2es(e,m^)K^V^ + o(l),

-h(6)
(9.12)

h(6)
J 8{2b(e,m)V2d(6r) « b(e,m^)V^2 + o(l).

-h(6)

Together, (7.9)lf (9.8), (9.11), and (9.12) imply (9.3).
Consider (9.4), whose derivation involves integrating (7.9)2 across the layer.

Note first that

where the second estimate is based on the energy-partition relation (7.68). With a
view toward estimating the remaining terms in (7.9)2, we use (3.5), (7.45), and
(7.29) to obtain

div{am4J(e,m)} * d

S m S m ^ e o ^ ) . ^ + O(h(6))

O(h(6)). (9.14)
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The estimates (9.13) and (9.14) in conjunction with (7.75)1 and (7.13)1#3 yield

h(6)
J IS^Ce.qOdCSr) « [^(e)] + o(l),

-h(6)

h(6)

J 8-H5 (cp) + 182«24/ (e,m)}K d(6r) « f (e.m^Kg + o(l), (9.15)

-h(6)

h(6)
J - £6div{«2c>mi|/(e,m)}d(6r) « div^{c(e,m^)} + o(l),

-h(8)
Similarly,

h(6)
J 6«2b(e,m)Vd(8r) * b(e,m^)V^ + o(l). (9.16)

-h(6)

Next, under the scaling introduced in Section 7.1 the field J defined by (4.23)2

has the form

(9.17)

The term in (7.9)2 yet to be considered is

S^divtJm) = S'HJK + m-VJ) (9.18)

(cf. (3.5), (3.7)3). By (7.68),

0(1), (9.19)

so its integral across the layer will be o(l). The treatment of 6"1m*VJ is more
delicate. Since 3rJ and V Ĵ are 0(1), we may use (7.27)a to conclude that

J) « 8"2SrJ + 0(1). (9.20)

The results (9.18)-(9.20) imply that, for p = h(6)/8,

h(6) h(6)
J B-idivtJnOdtSr) « 8"2JarJd(6r) + o(l) * ^{Jip) - J(-p)} + o(l), (9.21)

-h(6) -h(6)

where we have suppressed the arguments (C,t). By (9.6),
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J(p) « *(cp0) + 6$'(<p0) + O(62) - K i ^
(9.22)

with the fields on the right evaluated at r«p. Since p = h(6)/8, (7.68) and (7.72)
imply that 9rcp0(p) and g(p) tend to zero as 6->0. Further, since cpo(p)-*l as 6->0
and $'(l) = 0, it follows that $'((po(p))-+O as 6->0. Thus, since, by (7.68),

s 0, (9.22) yields the estimate

o(l). (9.23)

Similarly, 8"1J(-p) * o(l) and we may conclude that

h(6)

J o(l). (9.24)
-h(6)

Integrating (7.9^ across the layer and using the estimates (9.15), (9.16), and
(9.24), we are led to (9.4).

A more standard argument leading to (9.4) involves working with (7.8)2 in
place of (7.9)2. Inserting the inner expansions of © and cp in (7.8), this approach
leads to an equation of the form

! + 0(6-^(6)), (9.25)

with Z = Z(eo,9rcpo,m^,V^,K^) = 0(1). Hence, recognizing that 3rcp0 satisfies the
homogeneous equation

o(D (9.26)

(which results directly upon differentiating (7.67) with respect to r), Z and 3rcp0

must be orthogonal in the sense that

JZSrcpodr « O(h(8)). (9.27)
— oo

Evaluating the integral in (9.27) then yields (9.4). Our derivation of (9.4) using the
configurational force balance obviates the need to use such an orthogonality con-
dition.

Finally, we note that the entropy production f«eMT f"/\x of DT (cf. (4.20^),
which due to the scaling is now given by

e 2r « Ve-K(e,cp)Ve + 8{2eb(e,m)V2, (9.28)
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has, in agreement with (6.14), the asymptotic form

+ o(l) in Qr for each phase ir=oc,p,

e-1b(e.m-8)(VA)2*o(l) on-8.

This result follows from arguments similar to those used in deriving (9.3) and
(9.4).
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10. Discussion
The results of Sections 8 and 9 show that given a sharp-interface theory with

constitutive functions tpr(e) and Ky(e) for the bulk material and f(e,m^) and
b(e,m^) for the interface, corresponding response functions 4>bu(e,(p), K(e,cp),
4>(e,m), b(e,m), and SfCtp) for a diffuse-interface theory can be selected so that, in
the asymptotic limit of decreasing layer thickness,

the basic laws of the diffuse-interface theory are
asymptotic to the basic laws of the sharp-interface theory,

and

the PDEs of the diffuse-interface theory are asymptotic to the
bulk PDEs and interface conditions of the sharp-interface theory.

In selecting ij>bu(O,(p), K(e,cp), ^(e,m), b(e,m), one must only adhere to the follo-
wing guidelines:22

(i) the bulk free-energy 4>bu(e,<p) and conductivity K(e,<p) must obey

Jj K(e,0) = K«(e); }

(ii) the gradient energy modulus 4>(e,m) must obey

+(e.m) * {f(e,rn)/J(2$((p))*d(p}2; (10.2)
o

(iii) the kinetic modulus b(e,m) must obey

b(e,m) « f(e,m)b(e,m)/{J(2$((p))idcp}2. (10.3)
o

The specific form of the exchange energy 3Kcp) as well as the behavior of vj/bu(e,<p)
and K(e,cp) for cp away from cp=O,l remain unrestricted by these requirements. In
fact, the exchange energy effects the limiting constitutive equations only in the
integral of its square-root from well to well across the spinodal. Hence 9?(cp) can be
chosen based on practical considerations, motivated, say, by the desire for
computational simplicity. One might, for example, select the exchange energy to
2 2 I n addition to the relevant portions of assumptions (Al) and (A5).
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be of the form (3.34) with the constant v chosen to approximate a desired
interface thickness T. For example, 7 may be defined to be the value of d = r5
corresponding to $ * p minus that corresponding to <J> = l - p , with p small,23 so
that, by (7.19), (7.69), and (7.70),

1-p
7 * T(e.m) * 6(4>(e,m))* / J(2$(cp))*dcp; (10.4)

P
in general, this thickness may vary with both interfacial temperature and orien-
tation.

We emphasize that with these prescriptions our diffuse interface theory is
capable of generating any sharp interface theory that falls within the general
framework discussed in Section 6.1.
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