Carnegie Mellon University
Browse

File(s) stored somewhere else

Please note: Linked content is NOT stored on Carnegie Mellon University and we can't guarantee its availability, quality, security or accept any liability.

A simple, economical, and effective portable paediatric mock circulatory system.

journal contribution
posted on 2011-07-01, 00:00 authored by Stijn Vandenberghe, Fangjun Shu, Dorian K. Arnold, James AntakiJames Antaki

Ventricular assist devices (VADs) and total artificial hearts have been in development for the last 50 years. Since their inception, simulators of the circulation with different degrees of complexity have been produced to test these devices in vitro. Currently, a new path has been taken with the extensive efforts to develop paediatric VADs, which require totally different design constraints. This paper presents the manufacturing details of an economical simulator of the systemic paediatric circulation. This simulator allows the insertion of a paediatric VAD, includes a pumping ventricle, and is adjustable within the paediatric range. Rather than focusing on complexity and physiological simulation, this simulator is designed to be simple and practical for rapid device testing. The simulator was instrumented with medical sensors and data were acquired under different conditions with and without the new PediaFlowTM paediatric VAD. The VAD was run at different impeller speeds while simulator settings such as vascular resistance and stroke volume were varied. The hydraulic performance of the VAD under pulsatile conditions could be characterized and the magnetic suspension could be tested via manipulations such as cannula clamping. This compact mock loop has proven to be valuable throughout the PediaFlow development process and has the advantage that it is uncomplicated and can be manufactured cheaply. It can be produced by several research groups and the results of different VADs can then be compared easily.

History

Date

2011-07-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC