Carnegie Mellon University
Browse

Active Clustering: Robust and Efficient Hierarchical Clustering using Adaptively Selected Similarities

Download (1.5 MB)
journal contribution
posted on 2011-04-01, 00:00 authored by Brian Eriksson, Gautam Dasarathy, Aarti Singh, Robert Nowak

Hierarchical clustering based on pairwise similarities is a common tool used in a broad range of scientific applications. However, in many problems it may be expensive to obtain or compute similarities between the items to be clustered. This paper investigates the possibility of hierarchical clustering of N items based on a small subset of pairwise similarities, significantly less than the complete set of N(N-1)/2 similarities. First, we show that, if the intracluster similarities exceed intercluster similarities, then it is possible to correctly determine the hierarchical clustering from as few as 3N log N similarities. We demonstrate this order of magnitude saving in the number of pairwise similarities necessitates sequentially selecting which similarities to obtain in an adaptive fashion, rather than picking them at random. Finally, we propose an active clustering method that is robust to a limited fraction of anomalous similarities, and show how even in the presence of these noisy similarity values we can resolve the hierarchical clustering using only O(N log2 N) pairwise similarities.

History

Publisher Statement

Copyright 2011 by the authors

Date

2011-04-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC