File(s) stored somewhere else

Please note: Linked content is NOT stored on Carnegie Mellon University and we can't guarantee its availability, quality, security or accept any liability.

Active Elicitation of Data for Word Alignment

journal contribution
posted on 01.01.2010, 00:00 by Vamshi Ambati, Stephan Vogel, Jaime G. Carbonell

Semi-supervised word alignment aims to improve the accuracy of automatic word alignment by incorporating full or partial manual alignments. Motivated by standard active learning query sampling frameworks like uncertainty-, margin- and query-by-committee sampling we propose multiple query strategies for the alignment link selection task. Our experiments show that by active selection of uncertain and informative links, we reduce the overall manual effort involved in elicitation of alignment link data for training a semisupervised word aligner.


Publisher Statement

All Rights Reserved



Usage metrics