Carnegie Mellon University
Browse
- No file added yet -

Active Learning for Human Protein-Protein Interaction Prediction

Download (1.05 MB)
journal contribution
posted on 2010-01-01, 00:00 authored by Thahir P. Mohamed, Jaime G. Carbonell, Madhavi K. Ganapathiraju

Background:

Biological processes in cells are carried out by means of protein protein interactions. Determining whether a pair of proteins interacts by wet-lab experiments is resource-intensive; only about 38,000 interactions, out of a few hundred thousand expected interactions, are known today. Active machine learning can guide the selection of pairs of proteins for future experimental characterization in order to accelerate accurate prediction of the human protein interactome.

Results:

Random forest (RF) has previously been shown to be effective for predicting proteinprotein interactions. Here, four different active learning algorithms have been devised for selection of protein pairs to be used to train the RF. With labels of as few as 500 protein-pairs selected using any of the four active learning methods described here, the classifier achieved a higher F-score (harmonic mean of Precision and Recall) than with 3000 randomly chosen protein-pairs. F-score of predicted interactions is shown to increase by about 15% with active learning in comparison to that with random selection of data.

Conclusion:

Active learning algorithms enable learning more accurate classifiers with much lesser labelled data and prove to be useful in applications where manual annotation of data is formidable. Active learning techniques demonstrated here can also be applied to other proteomics applications such as protein structure prediction and classification.

History

Publisher Statement

© 2010 Mohamed et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Date

2010-01-01

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC