Carnegie Mellon University
Browse
- No file added yet -

Active Learning in Multiple Modalities for Semantic Feature Extraction from Video

Download (137.35 kB)
journal contribution
posted on 1993-05-01, 00:00 authored by Ming-yu Chen, Alexander Hauptmann
Active learning has been demonstrated to be a useful tool to reduce human labeling effort for many multimedia applications. However, most of the previous work on multimedia active learning has gloss the multi-modality problem very much. From several experimental results, multi-modality fusion plays an important role to boost performance of multimedia classification. In this paper, we present a multi-modality active learning approach which enhances the process of active learning approach from single-modality to multi-modality. The experimental results on the TRECVID 2004 semantic feature extraction task show that the proposed active learning approach works more effectively than single-modality approach and also demonstrate a significantly reduced amount of labeled data.

History

Date

1993-05-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC