Carnegie Mellon University
Browse
file.pdf (271 kB)

Adaptive Sampling for Multi-Robot Wide Area Prospecting

Download (271 kB)
journal contribution
posted on 2005-10-01, 00:00 authored by Kian Hsiang Low, Geoffrey J. Gordon, John M. Dolan, Pradeep K. Khosla
Prospecting for in situ mineral resources is essential for establishing settlements on the Moon and Mars. To reduce human effort and risk, it is desirable to build robotic systems to perform this prospecting. An important issue in designing such systems is the sampling strategy: how do the robots choose where to prospect next? This paper argues that a strategy called Adaptive Cluster Sampling (ACS) has a number of desirable properties: compared to conventional strategies, (1) it reduces the total mission time and energy consumption of a team of robots, and (2) returns a higher mineral yield and more information about the prospected region by directing exploration towards areas of high mineral density, thus providing detailed maps of the boundaries of such areas. Due to the adaptive nature of the sampling scheme, it is not immediately obvious how the resulting sampled data can be used to provide an unbiased, low-variance estimate of the regional mineral density. This paper therefore investigates new mineral density estimators, which have lower error than previously-developed estimators; they are derived from the older estimators via a process called Rao-Blackwellization. Since the efficiency of estimators depends on the type of mineralogical population sampled, the population characteristics that favor ACS estimators are also analyzed. The ACS scheme and our new estimators are evaluated empirically in a detailed simulation of the prospecting task, and the quantitative results show that our approach can yield more minerals with less resources and provide more accurate mineral density estimates than previous methods.

History

Publisher Statement

All Rights Reserved

Date

2005-10-01

Usage metrics

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC