posted on 2004-03-08, 00:00authored byXueying Zhao, Scott S Perry, Joshua D Horvath, Andrew J Gellman
Scanning tunneling microscopy (STM) and temperature programmed desorption (TPD) measurements have revealed
that the straight step edges of Cu(5 3 3) surfaces are reconstructed by the room temperature adsorption of R-3-
methylcyclohexanone (R-3-MCHO). STM and low energy electron diffraction (LEED) investigations have shown that
the clean Cu(5 3 3) surface is composed of arrays of narrow (1 1 1) terraces separated by straight (1 0 0) steps. During
room temperature adsorption of R-3-MCHO, the (1 0 0) step edges on the Cu(5 3 3) surface reconstruct, adopting a
zigzag structure that exposes kinked, high Miller index step edges. The density of step edge and kink adsorption sites on
Cu surfaces can be titrated by TPD of R-3-MCHO. TPD experiments also reveal the formation of kinks on the
Cu(5 3 3) surface during room temperature adsorption of R-3-MCHO. Furthermore, TPD experiments on the Cu(2 2 1)
surface having straight (1 1 0) step edges indicate that these also reconstruct to expose kinked step edges during R-3-
MCHO adsorption at room temperature. Although the kinks on such surfaces are chiral, the R- and S-forms appear to
be produced in a roughly racemic (equimolar) ratio. Thus, although the reconstruction of the initially achiral Cu
surfaces in the presence of a chiral adsorbate could, in principle, lead to a surface with a net chiral structure, R-3-
MCHO does not seem to be an effective chiral imprinting agent.