Carnegie Mellon University
Browse

An empirical investigation of sparse log-linear models for improved dialogue act classification

Download (218.82 kB)
journal contribution
posted on 2013-05-01, 00:00 authored by Yun-Nung Chen, William Yang Wang, Alexander RudnickyAlexander Rudnicky

Previous work on dialogue act classification have primarily focused on dense generative and discriminative models. However, since the automatic speech recognition (ASR) outputs are often noisy, dense models might generate biased estimates and overfit to the training data. In this paper, we study sparse modeling approaches to improve dialogue act classification, since the sparse models maintain a compact feature space, which is robust to noise. To test this, we investigate various element-wise frequentist shrinkage models such as lasso, ridge, and elastic net, as well as structured sparsity models and a hierarchical sparsity model that embed the dependency structure and interaction among local features. In our experiments on a real-world dataset, when augmenting N-best word and phone level ASR hypotheses with confusion network features, our best sparse log-linear model obtains a relative improvement of 19.7% over a rule-based baseline, a 3.7% significant improvement over a traditional non-sparse log-linear model, and outperforms a state-of-the-art SVM model by 2.2%.

History

Publisher Statement

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Date

2013-05-01