Carnegie Mellon University
Browse
- No file added yet -

Approximation Algorithms for the Traveling Purchaser Problem and Its Variants in Network Design

Download (225.54 kB)
journal contribution
posted on 1986-07-01, 00:00 authored by Ramamoorthi RaviRamamoorthi Ravi, F. S. Salman
The traveling purchaser problem is a generalization of the traveling salesman problem with applications in a wide range of areas including network design and scheduling. The input consists of a set of markets and a set of products. Each market offers a price for each product and there is a cost associated with traveling from one market to another. The problem is to purchase all products by visiting a subset of the markets in a tour such that the total travel and purchase costs are minimized. This problem includes many well-known NP-hard problems such as uncapacitated facility location, set cover and group Steiner tree problems as its special cases. We give an approximation algorithm with a poly-logarithmic worst-case ratio for the traveling purchaser problem with metric travel costs. For a special case of the problem that models the ring-star network design problem, we give a constant factor approximation algorithm. Our algorithms are based on rounding LP relaxation solutions.

History

Date

1986-07-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC