Carnegie Mellon University
Browse

AutoSplit: Fast and Scalable Discovery of Hidden Variables in Stream and Multimedia Databases

Download (386.6 kB)
journal contribution
posted on 1988-01-01, 00:00 authored by Jia-Yu Pan, Hiroyuki Kitagawa, Christos Faloutsos, Masafumi Hamamoto
For discovering hidden (latent) variables in real-world, nongaussian data streams or an n-dimensional cloud of data points, SVD suffers from its orthogonality constraint. Our proposed method, “AutoSplit”, finds features which are mutually independent and is able to discover non-orthogonal features. Thus, (a) finds more meaningful hidden variables and features, (b) it can easily lead to clustering and segmentation, (c) it surprisingly scales linearly with the database size and (d) it can also operate in on-line, single-pass mode. We also propose “Clustering-AutoSplit”, which extends the feature discovery to multiple feature/bases sets, and leads to clean clustering. Experiments on multiple, real-world data sets show that our method meets all the properties above, outperforming the state-of-the-art SVD.

History

Publisher Statement

All Rights Reserved

Date

1988-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC