Carnegie Mellon University
Browse
file.pdf (7.23 MB)

Automatic Photo Pop-Up

Download (7.23 MB)
journal contribution
posted on 2005-01-01, 00:00 authored by Derek Hoiem, Alexei A Efros, Martial Hebert
This paper presents a fully automatic method for creating a 3D model from a single photograph. The model is made up of several texture-mapped planar billboards and has the complexity of a typical children’s pop-up book illustration. Our main insight is that instead of attempting to recover precise geometry, we statistically model geometric classes defined by their orientations in the scene. Our algorithm labels regions of the input image into coarse categories: “ground”, “sky”, and “vertical”. These labels are then used to “cut and fold” the image into a pop-up model using a set of simple assumptions. Because of the inherent ambiguity of the problem and the statistical nature of the approach, the algorithm is not expected to work on every image. However, it performs surprisingly well for a wide range of scenes taken from a typical person’s photo album.

History

Publisher Statement

Copyright © 2005 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org. © ACM, 2005. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in the International Conference on Computer Graphics and Interactive Techniques (2005). http://doi.acm.org/10.1145/1186822.1073232

Date

2005-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC