Carnegie Mellon University
Browse

Beyond Local Appearance: Category Recognition from Pairwise Interactions of Simple Features

Download (5.16 MB)
journal contribution
posted on 2007-01-01, 00:00 authored by Marius Leordeanu, Martial Hebert, Rahul Sukthankar
We present a discriminative shape-based algorithm for object category localization and recognition. Our method learns object models in a weakly-supervised fashion, without requiring the specification of object locations nor pixel masks in the training data. We represent object models as cliques of fully-interconnected parts, exploiting only the pairwise geometric relationships between them. The use of pairwise relationships enables our algorithm to successfully overcome several problems that are common to previously-published methods. Even though our algorithm can easily incorporate local appearance information from richer features, we purposefully do not use them in order to demonstrate that simple geometric relationships can match (or exceed) the performance of state-of-the-art object recognition algorithms.

History

Publisher Statement

"©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Date

2007-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC