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Abstract. Symbolic model checking with Binary Decision Diagrams (BDDs)
has been successfully used in the last decade for formally verifying finite state
systems such as sequential circuits and protocols. Since its introduction in the
beginning of the 90’s, it has been integrated in the quality assurance process of
several major hardware companies. The main bottleneck of this method is that
BDDs may grow exponentially, and hence the amount of available memory re-
stricts the size of circuits that can be verified efficiently. In this article we survey
a technique called Bounded Model Checking (BMC), which uses a propositional
SAT solver rather than BDD manipulation techniques. Since its introduction in
1999, BMC has been well received by the industry. It can find many logical er-
rors in complex systems that can not be handled by competing techniques, and is
therefore widely perceived as a complementary technique to BDD-based model
checking. This observation is supported by several independent comparisons that
have been published in the last few years.

1 Introduction

Techniques for automatic formal verification of finite state transition systems have de-
veloped in the last 12 years to the point where major chip design companies are begin-
ning to integrate them in their normal quality assurance process. The most widely used
of these methods is calledModel Checking[11, 13]. In model checking, the design to
be verified is modeled as a finite state machine, and the specification is formalized by
writing temporal logicproperties. The reachable states of the design are then traversed
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in order to verify the properties. In case the property fails, a counterexample is gener-
ated in the form of a sequence of states. In general, properties are classified to ‘safety’
and ’liveness’ properties. While the former declares what should not happen (or equiv-
alently, what should always happen), the latter declares what should eventually happen.
A counterexample to safety properties is a trace of states, where the last state contra-
dicts the property. A counterexample to liveness properties, in its simplest form, is a
path to a loop that does not contain the desired state. Such a loop represents an infinite
path that never reaches the specified state.

It is impossible to know whether the specification of a system is correct or complete
– How can you know if what you wrote fully captures what you meant ? As a result,
there is no such thing as a ‘correct system’; it is only possible to check whether a system
satisfies its specification or not. Moreover, even the most advanced model checkers
are unable to verify all the desired properties of a system in a reasonable amount of
time, due to the immense state-spaces of such systems. Model checking is often used
for finding logical errors (‘falsification’) rather than for proving that they do not exist
(‘verification’). Users of model checking tools typically consider it as complimentary
to the more traditional methods of testing and simulation, and not as an alternative.
These tools are capable of finding errors that are not likely to be found by simulation.
The reason for this is that unlike simulators, which examine a relatively small set of
test cases, model checkers consider all possible behaviors or executions of the system.
Also, the process of writing the temporal properties in a formal language can be very
beneficial by itself, as it clarifies potential ambiguities in the specification.

The term Model Checking was coined by Clarke and Emerson [11] in the early
eighties. The first model checking algorithms explicitly enumerated the reachable states
of the system in order to check the correctness of a given specification. This restricted
the capacity of model checkers to systems with a few million states. Since the num-
ber of states can grow exponentially in the number of variables, early implementations
were only able to handle small designs and did not scale to examples with industrial
complexity.

It was the introduction ofsymbolic model checking[9, 15] that made the first break-
through towards wide usage of these techniques. In symbolic model checking, sets of
states are represented implicitly using Boolean functions. For example, assume that
the behavior of some system is determined by the two variablesv1 and v2, and that
(11,01,10) are the three combinations of values that can be assigned to these variables
in any execution of this system. Rather than keeping and manipulating this explicit
list of states (as was done in explicit model checking), it is more efficient to handle a
Boolean function that represents this set, e.g.v1∨ v2. Manipulating Boolean formulas
can be done efficiently with Reduced Ordered Binary Decision Diagrams [8] (ROBDD,
or BDD for short), a compact, canonical graph representation of Boolean functions. The
process works roughly as follows1: The set of initial states is represented as a BDD. The
procedure then starts an iterative process, where at each stepi, the set of states that can

1 The exact details of this procedure depends on the property that is being verified. Here we de-
scribe the procedure for testing simple ‘invariant’ properties, which state that some proposition
p has to hold invariantly in all reachable states. There is more than one way to perform this
check.



first be reached ini steps from an initial state are added to the BDD. At each such step,
the set of new states is intersected with the set of states that satisfy the negation of the
property. If the resulting set is non-empty, it means that an error has been detected. This
process terminates when the set of newly added states is empty or a an error is found.
The first case indicates that the property holds, because no reachable state contradicts
it. In the latter case, the model checker prints a counterexample. Note that termination
is guaranteed, since there are only finitely many states.

The combination of symbolic model checking with BDDs [20, 15], pushed the bar-
rier to systems with 1020 states and more [9]. Combining certain, mostly manual, ab-
straction techniques into this process pushed the bound even further. For the first time
a significant number of realistic systems could be verified, which resulted in a gradual
adoption of these procedures to the industry. Companies like Intel and IBM started de-
veloping their own in-house model checkers, first as experimental projects, and later as
one more component in their overall quality verification process of their chip designs.
Intel has invested significantly in this technology especially after the famous Pentium
bug a few years ago.

The bottleneck of these methods is the amount of memory that is required for stor-
ing and manipulating BDDs. The Boolean functions required to represent the set of
states can grow exponentially. Although numerous techniques such as decomposition,
abstraction and various reductions have been proposed through the years to tackle this
problem, full verification of many designs is still beyond the capacity of BDD based
symbolic model checkers.

The technique that we describe in this article, calledBounded Model Checking
(BMC), was first proposed by Biere et al. in 1999 [4]. It does not solve the complexity
problem of model checking, since it still relies on an exponential procedure and hence
is limited in its capacity. But experiments have shown that it can solve many cases that
cannot be solved by BDD-based techniques. The converse is also true: there are prob-
lems that are better solved by BDD-based techniques. BMC also has the disadvantage
of not being able to prove the absence of errors, in most realistic cases, as we will later
explain. Therefore BMC joins the arsenal of automatic verification tools but does not
replace any of them.

The basic idea in BMC is to search for a counterexample in executions whose length
is bounded by some integerk. If no bug is found then one increasesk until either a bug
is found, the problem becomes intractable, or some pre-known upper bound is reached
(this bound is called theCompleteness Thresholdof the design. We will elaborate on
this point in section 5). The BMC problem can be efficiently reduced to a propositional
satisfiability problem, and can therefore be solved by SAT methods rather than BDDs.
SAT procedures do not suffer from the space explosion problem of BDD-based meth-
ods. Modern SAT solvers can handle propositional satisfiability problems with hundreds
of thousands of variables or more.

Thus, although BMC aims at solving the same problem as traditional BDD-based
symbolic model checking, it has two unique characteristics: first, the user has to pro-
vide a bound on the number of cycles that should be explored, which implies that the
method is incomplete if the bound is not high enough. Second, it uses SAT techniques
rather than BDDs. Experiments with this idea showed that ifk is small enough (typi-



cally not more than 60 to 80 cycles, depending on the model itself and the SAT solver),
it outperforms BDD-based techniques. Also, experiments have shown that there is little
correlation between what problems are hard for SAT and what problems are hard for
BDD based techniques. Therefore, the classes of problems that are known to be hard for
BDDs, can many times be solved with SAT. If the SAT checkers are tuned to take advan-
tage of the unique structure of the formulas resulting from BMC, this method improves
even further [27]. A research published by Intel [14] showed that BMC has advantages
in both capacity and productivity over BDD-based symbolic model checkers, when ap-
plied to typical designs taken from Pentium-4™. The improved productivity results
from the fact that normally BDD based techniques need more manual guidance in order
to optimize their performance. These and other published results with similar conclu-
sions led most relevant companies, only three years after the introduction of BMC, to
adopt it as a complementary technique to BDD-based symbolic model checking.

The rest of the article is structured as follows. In the next section we give a technical
introduction to model checking and to the temporal logic that is used for expressing the
properties. In section 3 we describe the bounded model checking problem. In the fol-
lowing section we describe the reduction of the BMC problem to Boolean satisfiability,
including a detailed example. In section 5 we describe several methods for achieving
completeness with BMC. In section 6 we describe some of the essential techniques un-
derlying modern SAT solvers, and in section 7 we quote several experiments carried out
by different groups, both from academia and industry, that compare these techniques to
state of the art BDD-based techniques. We survey related work and detail our conclu-
sions from the experiments in section 8.

2 Model checking

Model checking as a verification technique has three fundamental features. First, it is
automatic; It does not rely on complicated interaction with the user for incremental
property proving. If a property does not hold, the model checker generates a coun-
terexample trace automatically. Second, the systems being checked are assumed to be
finite2. Typical examples of finite systems, for which model checking has successfully
been applied, are digital sequential circuits and communication protocols. Finally, tem-
poral logic is used for specifying the system properties. Thus, model checking can be
summarized as an algorithmic technique for checking temporal properties of finite sys-
tems.

As the reader may have deduced from the terminology we used in the introduction,
we do not distinguish between the termsdesign, system, andmodel. An engineer work-
ing on real designs has to use a syntactic representation in a programming or hardware
description language. Since we are only considering finite systems, the semantics of the
engineer’s design is usually some sort of a finite automaton. Independent of the con-
crete design language, this finite automaton can be represented by aKripke structure,

2 There is an ongoing interest in generalizing model checking algorithms to infinite systems, for
example, by including real-time, or using abstraction techniques. In this article we will restrict
the discussion to finite systems.



which is the standard representation of models in the model checking literature. It has
its origin in modal logics, the generalization of temporal logics.

Formally, a Kripke structureM is a quadrupleM = (S, I ,T,L) whereS is the set of
states,I ⊆Sis the set of initial states,T ⊆S×Sis the transition relation andL:S→P(A)
is the labeling function, whereA is the set of atomic propositions, andP(A) denotes the
powerset overA. Labeling is a way to attach observations to the system: for a states∈S
the setL(s) is made of the atomic propositions thathold in s.

The notion of a Kripke structure is only a vehicle for illustrating the algorithms.
It captures the semantics of the system under investigation. For a concrete design lan-
guage, the process of extracting a Kripke structure from a given syntactic representation
may not be that easy. In particular, the size of the system description and the size of the
state space can be very different. For example, if we model a sequential circuit with
a netlist of gates and flip-flops then the state space can be exponentially larger than
the system description. A circuit implementing ann-bit counter illustrates this ratio: it
can easily be implemented withO(n) gates andO(n) flip-flops, though the state space
of this counter is 2n. The exponential growth in the number of states poses the main
challenge to model checking. This is also known as thestate explosion problem.

The next step is to define the sequential behavior of a Kripke structureM. For this
purpose we usepaths. Each pathπ in M is a sequenceπ = (s0,s1, . . .) of states, given
in an order that respects the transition relation ofM. That is,T(si ,si+1) for all 0≤ i <
|π| −1. If I(s0), i.e., s0 is an initial state, then we say that the path isinitialized. The
length |π| of π can either be finite or infinite. Note that in general some of the states
may not be reachable, i.e., no initialized path leads to them. Fori < |π| we denote by
π(i) thei-th statesi in the sequence and byπi = (si ,si+1, . . .) the suffix ofπ starting with
statesi . To simplify some technical arguments we assume that the set of initial states is
non-empty. For the same reason we assume that the transition relation istotal, i.e., each
state has a successor state: for alls∈ S there existst ∈ Swith T(s, t).

As an example, consider the mutual exclusion problem of two processes competing
for a shared resource. Pseudo code for this example can be found in Fig. 1. We assume
that the processes are executed on a single computing unit in an interleaved manner. The
wait statement puts a process into sleep. When all processes are asleep the scheduler
tries to find a waiting condition which holds and reactivates the corresponding process.
If all the waiting conditions are false the system stalls.

processA
forever

A.pc = 0 wait for B.pc = 0
A.pc = 1 access shared resource

end forever
end process

processB
forever

B.pc = 0 wait for A.pc = 0
B.pc = 1 access shared resource

end forever
end process

Fig. 1.Pseudo code for two processes A and B competing for a shared resource.

On an abstract level, each process has two program counter positions 0 and 1 with 1
representing the critical section. A process may only access the shared resource in the



critical section of its program. A state of the system is a pair of program counters and
can be encoded as a binary vectors∈ S= {0,1}2 of length two. ThusS= {0,1}2 is the
set of states of the system. We assume that both processes start at program counter posi-
tion 0, which implies that the set of initial statesI consists of the single state represented
by the Boolean vector 00. The transition relation consists of several possible transitions,
according to the following two rules: the next states′ is the initial state 00 unless the
current state is already the initial state; The initial state can transition forth and back to
both 01 and 10. Thus, the transition relationT ⊆ S2 = {0,1}4 can be represented as the
following set of bit strings:

{0100,1000,1100,0001,0010}

A graphical representation of this example in form of a Kripke structure is shown in
Fig. 2. The initial state has an incoming edge without a source. The other edges corre-
spond to one of the five transitions. Note that unreachable states, such as state 11 in this
example, can only be removed after areachability analysishas marked all reachable
states. Accordingly the sequence 11,00,10, . . . is a valid path of the Kripke structure,

00 1001

11

Fig. 2.A Kripke structure for two processes that preserve mutual exclusion.

but it is not initialized, since initialized paths start with the state 00. An example of
an initialized path is the sequence 00,01,00,10,00,01, . . . where each process takes its
turn to enter the critical region after the other process has left it.

Our example system issafe in the sense that the two processes obey the mutual
exclusion property: at most one process can be in its critical region. A negative formu-
lation of this property is that the state in which both processes are in their critical region
is not reachable. Thus a simple model checking algorithm to check safety properties is
to build the state transition graph and enumerate all reachable states through a graph
search, starting from the set of initial states. Each visited state is analyzed in order to
check whether it violates the safety property.

Now, assume that we add a faulty transition from 10 to 11. A depth first search,
starting from the initial state 00 visiting 10 and then reaching 11 will show that thebad
state 11 is reachable and thus the safety property fails. This path is a counterexample to
the safety property that can help the user to debug the system.

What we have discussed so far is a typicalexplicit model checking algorithm for
simple safety properties. It can be refined by building the Kripke structure on-the-fly:
only after a state of the system is visited for the first time, the set of transitions is
generated leaving this state. Once a bad state is found, the process terminates. This



technique is particularly useful if the number of reachable states is much smaller than
|S|, the number of all states, which is often the case in practice.

Recall that safety properties describe invariants of a system, that is, that something
bad does not happen. As we have seen, these properties can be checked by reachability
analysis, i.e. by searching through the states graph and checking that each visited state
does not violate the invariant. Also recall that in addition to safety properties, it is some-
times desirable to use liveness properties in order to check whether something good will
eventually happen. In the mutual exclusion example, a natural question would be to ask
whether each process will eventually enter its critical region. For the first process this
means that the state 01 is eventually reached. More complicated liveness properties can
specify repeatedly inevitable behavior, such as ‘a request always has to be acknowl-
edged’. To capture this nesting and mutual dependency of properties, temporal logic is
used as a specification language.

Temporal logic is an extension of classical logic. In this article we concentrate on
Propositional Linear Temporal Logic (PLTL, or LTL for short) as an extension of propo-
sitional logic. From propositional logic LTL inherits Boolean variables and Boolean op-
erators such as negation¬, conjunction∧, implication→ etc. In addition to the Boolean
connectives, LTL has temporal operators. First, there is thenext timeoperatorX. The
formulaXp specifies that propertyp holds at the next time step.

In Fig. 3(a) a path is shown for whichXp holds. Each state is labeled with the atomic
properties that hold in it. Fig. 3(b) depicts a path for whichXp does not hold, becausep
holds in the first state but not in the next, second state. Now we can use this operator to

p p
...

p p p
...

(a) (b)

Fig. 3.Validity of next time operator in the formulaXp along a path.

build larger temporal formulas. For instancep∧X¬p holds iff p holds in the first state
and p does not hold in the second. As usual¬ is the Boolean negation operator. This
formula is true for the path on Fig. 3(b) and fails for the path on Fig. 3(a). By nesting the
operatorX we can specify the behavior of the system up to a certain depth. For instance
the formulaXX p holds for both paths.

The next class of temporal operators that we discuss, allows specifying repeated
unbounded behavior along an infinite path. TheGlobally operatorG is used for safety
properties. A formulaGp holdsalong a path ifp holds in all states of the path. Thus,
it fails for the path in Fig. 3(b), sincep does not hold in the second state. The safety
property for our earlier example, the Kripke structure of Fig. 2, can be specified as
G¬(c1∧c2), whereci labels the states where processi is in its critical section. It literally
can be translated into English as follows: for all states it is not the case that bothc1 and
c2 are true.

If all initialized paths of a Kripke structure satisfy a property, we say that the prop-
erty holds for the Kripke structure. For instance by making the state 11 in Fig. 2 an



initial state, each path starting at 11 would be initialized and would violateG¬(c1∧c2)
already in its first state. However since in our model 11 is not an initial state the property
holds for the Kripke structure.

Finally we look at liveness properties. The simplest liveness operator isF, theFi-
nally operator. The formulaFp holds along a path ifp holds somewhere on the path.
Equivalently, it fails to hold ifp stays unsatisfied along the whole path. For instance
Fp trivially holds in both paths of Fig. 3 sincep is already satisfied in the first state.
Similarly F¬p holds for the path in Fig. 3(b), becausep does not hold in the second
state.

The liveness property for Fig. 2, which says that the first process will eventually
reach its critical section, can be formalized asFc1. Since the system may loop between
the initial state and the state 10 on the right, never reaching 01, this property does not
hold. The initialized infinite path that starts with 00 and then alternates between 00 and
10 is a counterexample.

Now we can start to build more sophisticated specifications. The request / acknowl-
edge property mentioned above is formulated asG(r → Fa), wherer anda are atomic
propositions labeling states where a request and an acknowledge occurs, respectively.
The same idea can be used to specify that a certain sequence of actionsa1,a2,a3 has
to follow a guardg: G(g→ F(a1∧F(a2∧Fa3))). Note that there may be an arbitrary,
finite time interval (possibly empty) between the actions.

In this informal introduction to temporal logic, we will avoid a detailed explanation
of the binary temporal operatorsUntil (U) andRelease(R). The reader is referred to
[13] for more details. Also note that in the literature one can find an alternative notation
for temporal operators, such asdp for Xp, 3p for Fp and2p for Gp.

The formal semantics of temporal formulas is defined with respect to paths of a
Kripke structure. Letπ be an infinite path of a Kripke structureM and letf be a temporal
formula. We define recursively whenf holds onπ, writtenπ |= f :

π |= p iff p∈ L(π(0))

π |= ¬ f iff π 6|= f

π |= f ∧g iff π |= f andπ |= g

π |= X f iff π1 |= f

π |= G f iff πi |= f for all i ≥ 0

π |= F f iff πi |= f for somei ≥ 0

π |= f Ug iff πi |= g for somei ≥ 0 andπ j |= f for all 0≤ j < i

π |= f Rg iff πi |= g if for all j < i, π j 6|= f

The semantics of the other Boolean operators such as disjunction and implication can be
inferred from the above definition. As mentioned above we say that a temporal formula
f holds for a Kripke structureM, writtenM |= f , iff π |= f for all initialized pathsπ of
M. Finally, we say that two temporal formulasf andg areequivalent, written f ≡ g iff
M |= f ↔M |= g for all Kripke structuresM. With this notion, the semantics imply that
¬F¬p ≡Gp. Thus,F andG are dual operators.



The standard technique for model checking LTL [19] is to compute the product
of the Kripke structure with an automaton that represents the negation of the property
(this automaton captures exactly the execution sequences that violate the LTL formula).
Emptiness of the product automaton is an evidence of the correctness of the property.
More details about this procedure can be found in [13].

3 Bounded model checking

The original motivation of bounded model checking was to leverage the success of
SAT in solving Boolean formulas to model checking. During the last few years there
has been a tremendous increase in reasoning power of SAT solvers. They can now
handle instances with hundreds of thousands of variables and millions of clauses (we
will elaborate more on how these solvers work in section 6). Symbolic model checkers
with BDDs, on the other hand, can check systems with no more than a few hundred
latches. Though clearly the number of latches and the number of variables cannot be
compared directly, it seemed plausible that solving model checking with SAT could
benefit the former.

A similar approach has been taken in tackling the planning problem in Artificial
Intelligence [18]. Classical planning problems seek for a plan, i.e., a sequence of steps,
to perform some task (e.g. position cubes one above the other in descending size under
certain constraints on the intermediate states). As in BMC, the search for a plan is
restricted to paths with some predetermined bound. The possible plans in a given bound
are described by a SAT instance, which is polynomial in the original planning problem
and the bound. Compared to model checking, deterministic planning is only concerned
with simple safety properties: whether and how the goal state can be reached. In model
checking we want to check liveness properties and nested temporal properties as well.

Since LTL formulas are defined overall paths, finding counterexamples corresponds
to the question whether thereexistsa trace that contradicts them. If we find such a
trace, we call it awitnessfor the property. For example, a counterexample toM |=
Gp corresponds to the question whether there exists a witness toF¬p. For clarity of
presentation we will usepath quantifiersE andA to denote whether the LTL formula is
expected to be correct over all paths or only over some path. In other words,M |= A f
means thatM satisfiesf over all initialized paths, andM |= E f means that there exists
an initialized path inM that satisfiesf . We will assume that the formula is given in
negation normal form(NNF), in which negations are only allowed to occur in front of
atomic propositions. Every LTL formula can be transformed to this form by using the
duality of LTL operators and De-Morgan’s laws.

The basic idea of bounded model checking, as was explained before, is to consider
only a finite prefix of a path that may be a witness to an existential model checking prob-
lem. We restrict the length of the prefix by some boundk. In practice, we progressively
increase the bound, looking for witnesses in longer and longer traces.

A crucial observation is that, though the prefix of a path is finite, it still might rep-
resent an infinite path if there is aback loopfrom the last state of the prefix to any of
the previous states, as in Fig. 4(b). If there is no such back loop, as in Fig. 4(a), then
the prefix does not say anything about the infinite behavior of the path beyond statesk.



For instance, only a prefix with a back loop can represent a witness forGp. Even if p
holds along all the states froms0 to sk, but there is no back loop fromsk to a previous
state, we cannot conclude that we have found a witness forGp, sincep might not hold
atsk+1.

SkSi SkSiSl

(a) no loop (b) (k, l)-loop

Fig. 4.The two cases for aboundedpath.

Definition 1. For l ≤ k we call a pathπ a (k, l)-loop if T(π(k),π(l)) and π = u · vω

with u= (π(0), . . . ,π(l−1)) and v= (π(l), . . . ,π(k))3. We callπ a k-loop if there exists
k≥ l ≥ 0 for whichπ is a (k, l)-loop.

We will use the notion ofk-loops in order to define thebounded semanticsof model
checking, i.e., semantics of model checking under bounded traces. The bounded seman-
tics is an approximation to the unbounded semantics, which will allow us to define the
bounded model checking problem. In the next section we will give a translation of a
bounded model checking problem into a satisfiability problem.

In the bounded semantics we only consider a finite prefix of a path. In particular,
we only use the firstk+ 1 states (s0, . . . ,sk) of a path to determine the validity of a
formula along that path. If a path is ak-loop then we simply maintain the original LTL
semantics, since all the information about this (infinite) path is contained in the prefix
of lengthk.

Definition 2 (Bounded Semantics for a Loop).Let k≥ 0 andπ be a k-loop. Then an
LTL formula f is valid along the pathπ with bound k (in symbolsπ |=k f ) iff π |= f .

We now consider the case whereπ is not ak-loop. The formulaf := Fp is valid
alongπ in theunboundedsemantics if we can find an indexi ≥ 0 such thatp is valid
along the suffixπi of π. In the bounded semantics the(k+ 1)-th stateπ(k) does not
have a successor. Therefore, unlike the unbounded case, we cannot define the bounded
semantics recursively oversuffixes(e.g.πi) of π. We therefore introduce the notation
π |=i

k f , wherei is the current position in the prefix ofπ, which means that the suffixπi

of π satisfiesf , i.e.,π |=i
k f impliesπi |= f .

Definition 3 (Bounded Semantics without a Loop).Let k≥ 0, and letπ be a path
that isnot a k-loop. Then an LTL formula f isvalid alongπ with boundk (in symbols

3 The notationvω represents an infinite repetition ofv.



π |=k f ) iff π |=0
k f where

π |=i
k p iff p∈ L(π(i))

π |=i
k ¬p iff p 6∈ L(π(i))

π |=i
k f ∧g iff π |=i

k f andπ |=i
k g

π |=i
k f ∨g iff π |=i

k f or π |=i
k g

π |=i
k G f is always false

π |=i
k F f iff ∃ j, i ≤ j ≤ k. π |= j

k f

π |=i
k X f iff i < k andπ |=i+1

k f

π |=i
k f Ug iff ∃ j, i ≤ j ≤ k. π |= j

k g and∀n, i ≤ n < j. π |=n
k f

π |=i
k f Rg iff ∃ j, i ≤ j ≤ k. π |= j

k f and∀n, i ≤ n < j. π |=n
k g

Note that ifπ is not ak-loop, then we say thatG f is not valid alongπ in the bounded
semantics with boundk since f might not hold alongπk+1. These constraints imply that
for the bounded semantics the duality betweenG andF (¬F f ≡G¬ f ) no longer holds.

Now we describe how the existential model checking problem (M |= E f ) can be
reduced to aboundedexistential model checking problem (M |=k E f ). The basis for
this reduction lies in the following two lemmas.

Lemma 1. Let f be an LTL formula andπ a path, thenπ |=k f ⇒ π |= f

Lemma 2. Let f be an LTL formula and M a Kripke structure. If M|= E f then there
exists k≥ 0 with M |=k E f

Based on lemmas 1 and 2, we can now state the main theorem of this section. Infor-
mally, Theorem 1 says that if we take a sufficiently high bound, then the bounded and
unbounded semantics are equivalent.

Theorem 1. Let f be an LTL formula and M be a Kripke structure. Then M|= E f iff
there exists k≥ 0 s.t. M |=k E f .

4 Reducing bounded model checking to SAT

In the previous section we defined the semantics for bounded model checking. We now
show how to reduce bounded model checking to propositional satisfiability. This reduc-
tion enables us to use efficient propositional SAT solvers to perform model checking.

Given a Kripke structureM, an LTL formula f and a boundk, we will construct a
propositional formula[[ M, f ]]k. Let s0, . . . ,sk be a finite sequence of states on a pathπ.
Eachsi represents a state at time stepi and consists of an assignment of truth values to
the set of state variables. The formula[[ M, f ]]k encodes constraints ons0, . . . ,sk such
that [[ M, f ]]k is satisfiable iffπ is a witness forf . The definition of formula[[ M, f ]]k
will be presented as three separate components. We first define a propositional formula
[[ M ]]k that constrainss0, . . . ,sk to be a valid path starting from an initial state. We then



define theloop condition, which is a propositional formula that is evaluated to true only
if the pathπ contains a loop. Finally, we define a propositional formula that constrains
π to satisfy f .

Definition 4 (Unfolding of the Transition Relation). For a Kripke structure M, k≥ 0

[[ M ]]k := I(s0)∧
k−1∧
i=0

T(si ,si+1)

The translation of an LTL formula depends on the shape of the pathπ. We define the
propositional formulal Lk to be true if and only if there is a transition from statesk to
statesl . By definition, l Lk is equal toT(sk,sl ). We usel Lk to define the loop condition
Lk:

Definition 5 (Loop Condition). The loop condition Lk is true if and only if there exists
a back loop from state sk to a previous state or to itself: Lk :=

∨k
l=0 l Lk

Depending on whether a path is ak-loop (see Fig. 4), we have two different trans-
lations of a temporal formulaf . First we consider the case where the path is ak-loop.
We give a recursive translation of an LTL formulaf for a k-loop pathπ. The transla-
tion of f recurses over its subterms and the states inπ. The intermediate formulal [[ · ]]

i
k

depends on three parameters:l , k andi. We usel for the start position of the loop,k for
the bound, andi for the current position inπ.

Definition 6 (Successor in a Loop).Let k, l and i be non-negative integers s.t. l, i ≤
k. Define the successorsucc(i) of i in a (k, l)-loop assucc(i) := i + 1 for i < k and
succ(i) := l for i = k.

Definition 7 (Translation of an LTL Formula for a Loop). Let f be an LTL formula,
k, l , i ≥ 0, with l, i ≤ k.

l [[ p ]]ik := p(si) l [[ G f ]]ik := l [[ f ]]ik∧ l [[ G f ]]succ(i)
k

l [[ ¬p ]]ik := ¬p(si) l [[ F f ]]ik := l [[ f ]]ik∨ l [[ F f ]]succ(i)
k

l [[ f ∨g ]]ik := l [[ f ]]ik ∨ l [[ g ]]ik l [[ f Ug ]]ik := l [[ g ]]ik∨ ( l [[ f ]]ik∧ l [[ f Ug ]]succ(i)
k )

l [[ f ∧g ]]ik := l [[ f ]]ik ∧ l [[ g ]]ik l [[ f Rg ]]ik := l [[ g ]]ik∧ ( l [[ f ]]ik∨ l [[ f Rg ]]succ(i)
k )

l [[ X f ]]ik := l [[ f ]]succ(i)
k

The translation in Definition 7 is linear with respect to the size off and bound
k if subterms are shared. A common technique for sharing subterms in propositional
logic is to introduce new Boolean variables for subterms. Consider, for example, the
formula (a∧b)∨ (c→ (a∧b)). We introduce a new variablex for the subterma∧b,
and transform the original formula into(x∨(c→ x))∧(x↔ (a∧b)). The transformation
clearly preserves satisfiability.

For the translation presented in Definition 7, a new propositional variable is intro-
duced for each intermediate formulal [[ h ]]ik, whereh is a subterm of the LTL formula



f andi ranges from 0 tok. The total number of new variables isO(| f |×k), where| f |
denotes the size off . The size of the propositional formulal [[ f ]]0k is alsoO(| f |×k).

For the case whereπ is not ak-loop, the translation can be treated as a special case of
thek-loop translation. For Kripke structures with total transition relations, every finite
pathπ can be extended to an infinite one. Since the property of the path beyond statesk

is unknown, we make a conservative approximation and assume all properties beyond
sk are false.

Definition 8 (Translation of an LTL Formula without a Loop).
Inductive Case:∀i ≤ k

[[ p ]]ik := p(si) [[ G f ]]ik := [[ f ]]ik∧ [[ G f ]]i+1
k

[[ ¬p ]]ik := ¬p(si) [[ F f ]]ik := [[ f ]]ik∨ [[ F f ]]i+1
k

[[ f ∨g ]]ik := [[ f ]]ik∨ [[ g ]]ik [[ f Ug ]]ik := [[ g ]]ik∨ ([[ f ]]ik∧ [[ f Ug ]]i+1
k )

[[ f ∧g ]]ik := [[ f ]]ik∧ [[ g ]]ik [[ f Rg ]]ik := [[ g ]]ik∧ ([[ f ]]ik∨ [[ f Rg ]]i+1
k )

[[ X f ]]ik := [[ f ]]i+1
k

Base Case:
[[ f ]]k+1

k := 0

Combining all components, the encoding of a bounded model checking problem in
propositional logic is defined as follows.

Definition 9 (General Translation). Let f be an LTL formula, M a Kripke structure
and k≥ 0

[[ M, f ]]k := [[ M ]]k∧

((
¬Lk∧ [[ f ]]0k

)
∨

k∨
l=0

(
l Lk∧ l [[ f ]]0k

))

The left side of the disjunction is the case where there is no back loop and the
translation without a loop is used. The right side represent all possible starting pointsl
of a loop, and the translation for a(k, l)-loop is conjoined with the correspondingl Lk

loop condition. The size of[[ M, f ]]k is O(| f |×k×|M|), where|M| represents the size
of the syntactic description of the initial stateI and the transition relationT.

The translation scheme guarantees the following theorem, which we state without
proof:

Theorem 2. [[ M, f ]]k is satisfiable iff M|=k E f .

Thus, the reduction of bounded model checking to SAT is sound and complete with
respect to the bounded semantics.

Example 1.Let us consider the mutual exclusion example in Fig. 2. Each states of the
systemM is represented by two bit variables. We uses[1] for the high bit ands[0] for
the low bit.



The initial state is represented as follows,

I(s) := ¬s[1]∧¬s[0]

The transition relation is represented as follows,

T(s,s′) :=(¬s[1]∧(s[0]↔¬s′[0]))∨(¬s[0]∧(s[1]↔¬s′[1]))∨(s[0]∧s[1]∧¬s′[1]∧¬s′[0])

We now add a faulty transition from state 10 to state 11. We denote byTf the new
faulty transition relation.

Tf (s,s′) := T(s,s′)∨ (s[1]∧¬s[0]∧s′[1]∧s′[0])

Consider the safety property that at most one process can be in the critical region
at any time. The property can be represented asG¬p, where p is s[1]∧ s[0]. Using
BMC, we attempt to find a counterexample of the property, or, in other words, look for
a witness forFp. The existence of such a witness indicates that the mutual exclusion
property is violated byM. If, on the other hand, no such witness can be found, it means
that this property holds up to the given bound.

Let us consider a case where the boundk = 2. Unrolling the transition relation
results in the following formula:

[[ M ]]2 := I(s0)∧Tf (s0,s1)∧Tf (s1,s2)

The loop condition is:

L2 :=
2∨

l=0

Tf (s2,sl )

The translation for paths without loops is:

[[ Fp ]]02 := p(s0)∨ [[ Fp ]]12 [[ Fp ]]12 := p(s1)∨ [[ Fp ]]22
[[ Fp ]]22 := p(s2)∨ [[ Fp ]]32 [[ Fp ]]32 := 0

We can introduce a new variable for each intermediate formula[[ Fp ]]i2. Alternatively,
we can substitute all intermediate terms and obtain the following formula.

[[ Fp ]]02 := p(s0)∨ p(s1)∨ p(s2)

The translation with loops can be done similarly. Putting everything together we get the
following Boolean formula:

[[ M,Fp ]]2 := [[ M ]]2∧

((
¬L2∧ [[ Fp ]]02

)
∨

2∨
l=0

(
l L2∧ l [[ Fp ]]02

))
(1)

Since a finite path to a bad state is sufficient for falsifying a safety property, the
loop condition in the above formula may be omitted. This will result in the following
formula:

[[ M,Fp ]]2 := [[ M ]]2∧ [[ Fp ]]02 =

I(s0)∧Tf (s0,s1)∧Tf (s1,s2)∧ (p(s0)∨ p(s1)∨ p(s2))

The assignment 00, 10, 11 satisfies[[ M,Fp ]]2. This assignment corresponds to a
path from the initial state to the state 11 that violates the mutual exclusion property.ut



5 Techniques for Completeness

Given a model checking problemM |= E f , a typical application of BMC starts at bound
0 and increments the bound until a witness is found. This represents a partial decision
procedure for model checking problems. IfM |= E f , a witness of finite lengthk exists,
and the procedure terminates at lengthk. If M 6|= E f , however, the outlined procedure
does not terminate. Although the strength of BMC is in detection of errors, it is desir-
able to build a complete decision procedure based on BMC for obvious reasons. For
example, BMC may be used to clear a module level proof obligation which may be
as assumption for another module. A missed counterexample in a single module may
have the unpleasant consequence of breaking the entire proof. In such compositional
reasoning environments, completeness becomes particularly important.

In this section, we will highlight three techniques for achieving completeness with
BMC. For unnested properties such asGp and Fp, we determine in section 5.1 the
maximum boundk that the BMC formula should be checked with in order to guarantee
that the property holds. This upper bound is called the Completeness Threshold. For
liveness properties, we show an alternative path to completeness in section 5.2. The
alternative method is based on a semi-decision procedure forAFp combined with a
semi decision procedure forEGp. Finally, in section 5.3, we show how for safety prop-
erties completeness can be achieved with induction based on strengthening inductive
invariants.

5.1 The completeness threshold

For every finite state systemM, a propertyp, and a given translation scheme, there
exists a numberCT , such that the absence of errors up to cycleC T proves thatM |= p.
We call CT the Completeness Thresholdof M with respect top and the translation
scheme.

The completeness threshold forGp formulas is simply the minimal number of steps
required to reach all states. We call this thereachability diameterand formally define it
as follows:

Definition 10 (Reachability Diameter).The reachability diameter rd(M) is the mini-
mal number of steps required for reaching all reachable states:

rd(M) := min{i|∀s0, . . . ,sn. ∃s′0, . . . ,s
′
t , t ≤ i.

I(s0)∧
∧n−1

j=0 T(sj ,sj+1)→ (I(s′0)∧
∧t−1

j=0T(s′j ,s
′
j+1)∧s′t = sn)}

(2)

Formula (2) simply states that every state that is reachable inn steps (left side of the
implication) can also be reached ini steps (right side of the implication). In other words,
rd(M) is the longest ‘shortest path’ from an initial state to any reachable state. This
definition leaves open the question of how large shouldn be. One option is to simply
take the worst case, i.e.n= 2|V|, whereV is the set of variables defining the states ofM.
A better option is to taken = i +1 and check whether every state that can be reached in
i +1 steps, can be reached sooner:

rd(M) := min{i|∀s0, . . . ,si+1. ∃s′0, . . . ,s
′
i .

I(s0)∧
∧i

j=0T(sj ,sj+1)→ (I(s′0)∧
∧i−1

j=0T(s′j ,s
′
j+1)∧

∨i
j=0s′j = si+1)}

(3)



In Formula (3), the sub formula to the left of the implication represent ani + 1 long
path, and the sub-formula to the right of the implication represents ani long path. The
disjunction in the end of the right hand side forces thei +1 state in the longer path to
be equal to one of the states in the shorter path.

Both equations 2 and 3 include an alternation of quantifiers, and are hence hard to
solve for realistic models. As an alternative, it is possible to compute an over approx-
imation of rd(M) with a SAT instance. This approximation was first defined in [4] as
therecurrence diameter, and we now adapt it to the reachability diameter:

Definition 11 (Recurrence Diameter for Reachability).The Recurrence Diameter
for Reachability with respect to a model M, denoted by rdr(M), is the longest loop-
free path in M starting from an initial state:

rdr(M) := max{i| ∃s0 . . .si . I(s0)∧
i−1∧
j=0

T(sj ,sj+1)∧
i−1∧
j=0

i∧
k= j+1

sj 6= sk} (4)

rdr(M) is clearly an over-approximation ofrd(M), because every shortest path is a
loop-free path.

The question of how to computeC T for other temporal properties is still open. Most
safety properties used in practice can be reduced to someGp formula, by computingp
over a product ofM and some automaton, which is derived from the original property.
Therefore computingCT for these properties is reduced to the problem of computing
CT of the new model with respect to aGp property.

5.2 Liveness

In the discussion of bounded model checking so far, we have focused on existentially
quantified temporal logic formulas. To verify an existential LTL formula against a
Kripke structure, one needs to find a witness. As explained before, this is possible be-
cause if a witness exists, it can be characterized by a finite sequence of states. In the
case of liveness, the dual is also true: if a proof of liveness exists, the proof can be es-
tablished by examining all finite sequences of lengthk starting from initial states (note
that for a proof we need to consider all paths rather than search for a single witness).

Definition 12 (Translation for Liveness Properties).

[[ M,AFp ]]k := I(s0)∧
k−1∧
i=0

T(si ,si+1)→
k∨

i=0

p(si) (5)

Theorem 3. M |= AFp iff ∃k [[ M,AFp ]]k is valid.

According to Theorem 3, we need to search for ak that makes the negation of
[[ M,AFp ]]k unsatisfiable. Based on this theorem, we obtain a semi-decision procedure
for M |= AFp. The procedure terminates if the liveness property holds. The boundk
needed for a proof represents the length of the longest sequence from an initial state
without hitting a state wherep holds. Based on bounded model checking, we have a
semi-decision procedure forM |= EG¬p, or equivalently,M 6|= AFp. Since we know
that eitherAFp or EG¬p must hold forM, one of the semi-decision procedures must
terminate. Combining the two, we obtain a complete decision procedure for liveness.



5.3 Induction

Techniques based on induction can be used to make BMC complete for safety properties
[25]. ProvingM |= AGp by induction typically involves finding (manually) a strength-
eninginductive invariant. An inductive invariant is an expression that on the one hand
is inductive (i.e., its correctness in previous steps implies its correctness in the current
step), and on the other hand it implies the property. Proofs based on inductive invariants
have three steps: the base case, the induction step and the strengthening step. Given
a boundn, which we refer to as the induction depth, we first prove that the inductive
invariantφ holds in the firstn steps, by checking that Formula (6) is unsatisfiable.

∃s0, . . . ,sn. I(s0)∧
n−1∧
i=0

T(si ,si+1)∧
n∨

i=0

¬φ(si) (6)

Next, we prove the induction step, by showing that Formula (7) is unsatisfiable:

∃s0, . . . ,sn+1.
n∧

i=0

(φ(si)∧T(si ,si+1))∧¬φ(sn+1). (7)

Finally, we establish that the strengthening inductive invariant implies the property for
an arbitraryi:

∀si . φ(si)→ p(si) (8)

If we use the propertyp as the inductive invariant, the strengthening step holds trivially
and the base step is the same as searching for a counterexample toGp.

In a further refinement of Formula (7) suggested by Sheeran etc. [25], paths inM are
restricted to contain distinct states. The restriction preserves completeness of bounded
model checking for safety properties: if a bad state is reachable, it is reachable via a
path with no duplicate states, or, in other words, via a loop-free path. The inductive step
is now represented by Formula (9):

∃s0, . . . ,sn+1.
n∧

j=0

n+1∧
k= j+1

(sj 6= sk)∧
n∧

i=0

(φ(si)∧T(si ,si+1))∧¬φ(sn+1) (9)

The restriction to loop-free paths constrains the formula further and hence prunes the
search space of the SAT procedure and consequently improves its efficiency. On the
other hand, the propositional encoding of distinct state restriction is quadratic with re-
spect to the boundk. Whenk is large, the restriction may significantly increase the
size of the propositional formula. The practical effectiveness of this restriction is to be
further studied.

6 Propositional SAT solvers

In this section we briefly outline the principles followed by modern propositional SAT-
solvers. Our description follows closely the ones in [30] and [27].

Given a propositional formulaf , a SAT solver finds an assignment to the variables
of f that satisfy it, if such an assignment exists, or return ‘unsatisfiable’ otherwise.



Normally SAT solvers accept formulas in Conjunctive Normal Form (CNF), i.e., a con-
junction of clauses, each contains a disjunction of literals and negated literals. Thus, to
satisfy a CNF formula, the assignment has to satisfy at least one literal in each clause.
Every propositional formula can be translated to this form. With a naive translation, the
size of the CNF formula can be exponential in the size of the original formula. This
problem can be avoided by addingO(| f |) auxiliary Boolean variables, where| f | is the
number of sub expressions inf .

Most of the modern SAT-checkers are variations of the well known Davis-Putnam
procedure [17] and its improvement by Davis, Loveland and Logemann (known as
DPLL) [16]. The procedure is based on a backtracking search algorithm that, at each
node in the search tree, decides on anassignment(i.e. both a variable and a Boolean
value, which determines the next sub tree to be traversed) and computes its immediate
implications by iteratively applying the ‘unit clause’ rule. For example, if the decision
is x1 = 1, then the clause(¬x1∨ x2) immediately implies thatx2 = 1. This, in turn,
can imply other assignments. Iterated application of the unit clause rule is commonly
referred to as Boolean Constraint Propagation (BCP). A common result of BCP is that
a clause is found to be unsatisfiable, a case in which the procedure must backtrack
and change one of the previous decisions. For example, if the formula also contains
the clause(¬x1∨¬x2), then clearly the decisionx1 = 1 must be changed, and the im-
plications of the new decision must be re-computed. Note that backtracking implicitly
prunes parts of the search tree. If there aren unassigned variables in a point of back-
tracking, then a sub tree of size 2n is pruned. Pruning is one of the main reasons for the
impressive efficiency of these procedures.

// Input arg: Current decision level d
// Return value:
// SAT(): {SAT, UNSAT}
// Decide(): {DECISION, ALL-DECIDED }
// Deduce(): {OK, CONFLICT}
// Diagnose(): {SWAP, BACK-TRACK} also calculates β

SAT (d)
{

l1: if (Decide ( d) == ALL-DECIDED) return SAT;
l2: while (TRUE) {
l3: if (Deduce( d) != CONFLICT) {
l4: if (SAT ( d+1) == SAT) return SAT;
l5: else if ( β < d || d == 0)
l6: { Erase ( d); return UNSAT; }

}
l7: if (Diagnose ( d) == BACK-TRACK) return UNSAT;

}
}

Fig. 5.Generic backtrack search SAT algorithm



Fig. 5 describes a template that most SAT solvers use. It is a simplified version
of the template presented in [30]. At eachdecision level din the search, a variable
assignmentVd = {T,F} is selected with theDecide() function. If all the variables are
already decided (indicated byALL-DECIDED), it implies that a satisfying assignment
has been found, andSAT returnsSATISFIABLE . Otherwise, theimplied assignments
are identified with theDeduce() function, which corresponds to a straightforward
BCP. If this process terminates with no conflict, the procedure is called recursively with
a higher decision level. Otherwise,Diagnose() analyzes the conflict and decides on
the next step. IfVd was assigned only one of the Boolean values, it swaps this value
and the deduction process in linel3 is repeated. If the swapped assignment also fails, it
means thatVd is not responsible for the conflict. In this caseDiagnose() identifies
the assignments that led to the conflict and computes the decision levelβ (β is a global
variable that can only be changed byDiagnose() ) to which SAT() should backtrack
to. The procedure will then backtrackd−β times, each timeErase() -ing the current
decision and its implied assignments, in linel6.

The original Davis-Putnam procedure backtracked one step at a time (i.e.β = d−1).
Modern SAT checkers includeNon-chronological Backtrackingsearch strategies (i.e.
β = d− j, j ≥ 1), allowing them to skip a large number of irrelevant assignments. The
introduction of non-chronological backtracking to SAT solvers in the mid 90’s was one
of the main breakthroughs that allowed these procedures for the first time to handle
instances with tens of thousands of variables (this technique was used previously in
general Constraint Solving Problem (CSP) tools. See [30] for more details).

The analysis of conflicts is also used forlearning. The procedure adds constraints,
in the form of new clauses (calledconflict clauses) that prevent the repetition of bad
assignments. This way the search procedure backtracks immediately if such an assign-
ment is repeated. We explain the mechanism of deriving new conflict clauses by fol-
lowing a simplified version of an example given in the above reference.

Example 2.Assume the clause data base includes the clauses listed in Fig. 6(a), the
current truth assignment is{x5 = 0}, and the current decision assignment isx1 = 1.
Then the resultingimplication graphdepicted in Fig. 6 (b) describes the unit clause
propagation process implied by this decision assignment.
Each node in this graph corresponds to a variable assignment. The incoming directed
edges(x1,x j)...(xi ,x j) labeled by clausec represent the fact thatx1...xi ,x j arec’s liter-
als and that the current value ofx1, ...,xi implies the value ofx j according to the unit
clause rule. Thus, vertices that have no incoming edges correspond to decision assign-
ments while the others correspond to implied assignments. The implication graph in
this case ends with a conflict vertex. Indeed the assignmentx1 = 1 leads to a conflict
in the value ofx4, which implies that eitherc3 or c4 cannot be satisfied. When such
a conflict is identified,Diagnose() determines those assignments that are directly
responsible for the conflict. In the above example these are{x1 = 1,x5 = 0}. The con-
junction of these assignments therefore represents a sufficient condition for the conflict
to arise. Consequently, the negation of this conjunction must be satisfied if the instance
is satisfiable. We can therefore add the new conflict clauseπ : (¬x1∨ x5) to the clause
database, with the hope that it will speed up the search. ut



c1 = (¬x1∨x2)

c2 = (¬x1∨x3∨x5)

c3 = (¬x2∨x4)

c4 = (¬x3∨¬x4)

c1
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c2

x1 = 1
c2

x
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x
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ConflictDecision
= 1/0
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Fig. 6. A clause data base (a) and an implication graph (b) of the assignmentx1 = 1 shows how
this assignment, together with assignments that were made in earlier decision levels, leads to a
conflict.

Another source of constant improvement in these tools is the development of new
decision heuristics inDECIDE() , i.e. the strategy of picking the next variable and
its value. The order can be static, i.e., predetermined by some criterion, or decided
dynamically according to the current state of the search. For example, the DLIS strategy
[29] picks an assignment that leads to the largest number of satisfied clauses. Although
this strategy normally results in a good ordering, it has a very large overhead, since
each decision requires a count of the currently unsatisfied clauses that contain each
variable or its negation. A recently suggested strategy, called Variable State Independent
Decaying Sum (VSIDS) [22], avoids this overhead by ignoring whether the clause is
currently satisfiable or not. It counts (once) the number of times each variable appears
in the formula, and then updates this number once new conflict clauses are added to the
formula. By giving more weight to variables in newly added conflict clauses, it makes
the decisionconflict-driven, i.e. it gives higher priority to solving conflicts that were
recently identified. This procedure turned out to be an order of magnitude faster, on
average, compared to DLIS.

7 Experiments

Since the introduction of BMC several independent groups published experimental re-
sults, comparing BMC to various BDD based symbolic model checkers. In this section
we quote some of the experiments conducted by the verification groups at IBM, Intel
and Compaq, as well as our own experiments. All of these experiments basically reach
the same conclusion: SAT based Bounded Model Checking is typically faster in finding
bugs compared to BDDs. The deeper the bug is (i.e. the longer the shortest path leading
to it is), the less advantage BMC has. With state of the art SAT solvers and typical hard-
ware designs, it usually cannot reach bugs beyond 80 cycles in a reasonable amount
of time, although there are exceptions, as the experiments conducted in Compaq show
(see Fig. 10 below). In any case, BMC can solve many of the problems that cannot be
solved by BDD based model checkers.



The experiments were conducted with different SAT solvers and compared against
different model checkers. The introduction of the SAT solverCHAFF in mid 2001
changed the picture entirely, as on average it is almost an order of magnitude faster
than previous SAT solvers. This means that experiments conducted before that time are
skewed towards BDDs, compared to what these experiments would reveal today.

The first batch is summarized in Fig. 7. It shows the results of verifying a 16x16
shift and add multiplier, as was first presented in [5]. This is a known hard problem
for BDDs. The property is the following: the output of the sequential multiplier is the
same as the output of a combinational multiplier applied to the same input words. The
property was verified for each of the 16 output bits separately, as shown in the table. For
verifying bit i, it is sufficient to set the boundk to i +1. This is the reason that the SAT
instance becomes harder as the bit index increases. As a BDD model checker, we used
B. Yang’s version ofSMV, which is denoted in the table asSMV2. The variable ordering
for SMV was chosen manually such that the bits of registers are interleaved. Dynamic
reordering did not improve these results.

bit k SMV2 MB PROVERMB
0 1 25 79 < 1 1
1 2 25 79 < 1 1
2 3 26 80 < 1 1
3 4 27 82 1 2
4 5 33 92 1 2
5 6 67 102 1 2
6 7 258 172 2 2
7 8 1741 492 7 3
8 9 >1GB 29 3
9 10 58 3
10 11 91 3
11 12 125 3
12 13 156 4
13 14 186 4
14 15 226 4
15 16 183 5

Fig. 7.Results in seconds and Mega-Byte of memory when verifying a 16x16 bit sequential shift
and add multiplier with overflow flag and 16 output bits.

A second batch of comparisons was published in [27]. It presents a comparison be-
tweenRULEBASE, IBM’s BDD based symbolic model checker, and several SAT solvers,
when applied to 13 hardware designs with known bugs. The columnsRULEBASE1 and
RULEBASE2 represent results achieved byRULEBASE under two different configura-
tions. The first is the default configuration, with dynamic reordering. The second is
the same configuration without reordering, but the initial order is taken from the or-
der that was calculated withRULEBASE1. These two configurations represent a typical
scenario of Model Checking withRULEBASE. Each time reordering is activated, the



initial order is potentially improved and saved in a special order file for future runs. The
column ‘GRASP’ contains results of solving the corresponding BMC formulas with the
SAT solverGRASP. The following column, ‘GRASP (tuned)’, contains results of solv-
ing the same instances with a version ofGRASPthat is tuned for BMC, as explained in
the above reference. The last column was not part of the original presentation in [27];
rather it was added for this article. It contains results achieved byCHAFF on the same
benchmarks, without any special tuning (CHAFF was released after the above reference
was published). The fact thatCHAFF can solve all instances, whileGRASP, which was
considered as the state of the art solver beforeCHAFF, cannot solve it even with spe-
cial tuning, demonstrates the great progress of SAT solvers and the influence of this
progress on BMC.

Model k RULEBASE1 RULEBASE2 GRASP GRASP(tuned) CHAFF

Design 1 18 7 6 282 3 2.2
Design 2 5 70 8 1.1 0.8 < 1
Design 3 14 597 375 76 3 < 1
Design 4 24 690 261 510 12 3.7
Design 5 12 803 184 24 2 < 1
Design 6 22 * 356 * 18 12.2
Design 7 9 * 2671 10 2 < 1
Design 8 35 * * 6317 20 85
Design 9 38 * * 9035 25 131.6
Design 1031 * * * 312 380.5
Design 1132 152 60 * * 34.7
Design 1231 1419 1126 * * 194.3
Design 1314 * 3626 * * 9.8

Fig. 8. The IBM® benchmark: verifying various hardware designs with an in-house BDD model
checker (RULEBASE) and the SAT solverGRASPwith and without special tuning. The last column
presents the results achieved with the newer SAT solverCHAFF on the same benchmark examples.
Results are given in seconds.

The next benchmark examples was published in [14] by the formal methods group
of Intel. They compared the run time of their BDD model checkerFORECAST and
their bounded model checkerTHUNDER (based on a SAT solver calledSIMO) when
applied to 17 different circuit designs. The table in Fig. 9 summarizes the results of
their comparison when the two tools are run under their default configuration4.

Finally, Compaq published another batch of results obtained with industrial exam-
ples [6]. They used bounded model checking with thePROVERSAT solver for finding
bugs in the memory system of an advanced Alpha microprocessor. Their conclusion
was similar to the previous published comparative research: SAT based bounded model

4 Other tables in the above reference show that with manual intervention in choosing the variable
order the results can change in favor ofFORECAST.



Model k FORECAST(BDD) THUNDER (SAT)
Circuit 1 5 114 2.4
Circuit 2 7 2 0.8
Circuit 3 7 106 2
Circuit 4 11 6189 1.9
Circuit 5 11 4196 10
Circuit 6 10 2354 5.5
Circuit 7 20 2795 236
Circuit 8 28 * 45.6
Circuit 9 28 * 39.9
Circuit 10 8 2487 5
Circuit 11 8 2940 5
Circuit 12 10 5524 378
Circuit 13 37 * 195.1
Circuit 14 41 * *
Circuit 15 12 * 1070
Circuit 16 40 * *
Circuit 17 60 * *

Fig. 9. The Intel® benchmark: verifying various circuit designs with an in-house BDD model
checker (FORECAST) and an in-house SAT solver (THUNDER). Results are given in seconds.

checking can solve in a short amount of time examples that cannot be solved with a
BDD based model checker. Their results are summarized in Fig. 10.

k SMV PROVER

25 62280 85
26 32940 19
34 11290 586
38 18600 39
53 54360 1995
56 44640 2337
76 27130 619
144 44550 10820

Fig. 10. The Compaq® benchmark: verifying an Alpha microprocessor with BDDs (SMV) and
SAT (PROVER). Results are given in seconds.



8 Related Work and Conclusions

Verification techniques based on satisfiability checking have been used since the early
90’s by G. Stalmarck and his company Prover Technologies [31]. The method is based
on the patented SAT solver PROVER [26], that is very effective in tackling structured
problems that arise from real-world designs. The work in [31] focuses on checking
correctness of designs by means of inductive reasoning, as was explained in section
5.3. Impressive results have been achieved in terms of integration of this technique
within the development process in several domains (see e.g. [7]).

The initial successes of BMC drew attention from the verification community. It
has been introduced in several model checkers (e.g. NuSMV [10]), and a number of
advances have been achieved in several directions, which we briefly describe now.

In [27], Strichman showed that it is possible to tune SAT solvers by exploiting the
structure of the problem being encoded in order to increase efficiency. Notable contribu-
tions in [27] and [28] are the use of problem-dependent variable ordering and splitting
heuristics in the SAT solver, pruning the search space by exploiting the regular structure
of BMC formulas, reusing learned information between the various SAT instances and
more. These improvements were the basis for the tuned SAT solver presented in Fig. 8.
The work in [32] pushes this idea further. It relies on an incremental SAT solver, rather
than on generating a new SAT instance for each attempted bound. At each step, they
add and remove clauses from a single SAT instance, and this way retain the learned
information from the previous instances, as was independently suggested in [28].

A related development was the extension of Bounded Model Checking to Timed
Systems [2]. For this purpose they useMATHSAT [1], a SAT solver extended to deal
with linear constraints over real variables. The encoding style extends the encoding for
the untimed case, and uses constraints over real variables to represent the aspects related
to time.

The success of SAT in solving large problems led several groups to combine SAT
in various ways with other techniques used in verification, not just as part of BMC. We
will mention here two of these works. McMillan [21] recently introduced a SAT-based
unboundedCTL model checker. It is based on an quantifier elimination procedure simi-
lar to [23, 24]. While the top level algorithm is basically the same as used in BDD-based
CTL model checking, sets of states are represented as CNF formulas rather than with
BDDs. This required a modification of the SAT solver in order to be able to perform
the key operation of quantifier elimination. His experimental results show that this tech-
nique can compete with BDD based model checkers and in some cases outperform it.
Compared to BMC, it has the obvious advantage of reaching a fixpoint afterrd(M)
steps, rather than afterrdr(M) steps (see section 5.1), which is only an over approxima-
tion of rd(M). Currently there is no available data comparing this technique to BMC.

SAT-based techniques have also been used in the framework of abstraction / refine-
ment [12]. While a BDD based model checker is used to prove the abstract model,
SAT solvers are used to check whether the counterexamples constructed in the abstract
space are real or spurious, and also to derive a refinement to the abstraction being ap-
plied. This procedure relies on the speed of SAT to check whether a given trace (i.e.
with a known length, as in BMC) is real. On the other hand it enjoys the completeness
guaranteed by using BDD based model checkers.



A recently published work by Baumgartener et al. [3] holds a large promise for
making BMC complete for a large class of hardware designs. They perform a structural
analysis of the design in order to derive an over approximation of the reachability diam-
eter, thus achieving completeness. The experiments show that the reachability diameter
of realistic designs can be reached, and hence the property can be proved. This work
was published only recently, and its affect is not yet clear. The authors of [3] showed
that for a large class of netlists, it is possible to find smaller reachability diameters
than those that are defined by Formula (4). This requires a fairly simple analysis of the
netlist structure, identifying frequently occurring components like memory registers,
queue registers, etc., and identifying its Strongly Connected Components (SCC). The
overall reachability diameter is then defined recursively on the reachability diameters
of its individual SCCs. Their experiments showed that many netlists have reachability
diameters as small as 20, which means that they can be easily proved with BMC. It is
perhaps too early to judge to what degree this improvement will make BMC viable for
verification, rather than for falsification alone.

Despite its recent introduction, Bounded Model Checking is now widely accepted
as an effective technique that complements BDD-based model checking. A typical
methodology applied in the industry today is to use both BMC and BDD based model
checkers as complementary methods. In some cases both tools are run in parallel, and
the first tool that finds a solution, terminates the other process. In other cases BMC is
used first to find quickly the more shallow bugs, and when this becomes too hard, an
attempt to prove that the property is correct is being made with a BDD based tool. In
any case, it is clear that together with the advancements in the more traditional BDD
based symbolic model checkers, formal verification of finite models has made a big step
forward in the last few years.
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