Carnegie Mellon University
Browse
- No file added yet -

Causal Mechanism and Probability: A Normative Approach

Download (235.64 kB)
journal contribution
posted on 1998-01-01, 00:00 authored by Clark Glymour, Patricia W. Cheng
The rationality of human causal judgments has been the focus of a great deal of recent research. We argue against two major trends in this research, and for a quite different way of thinking about causal mechanisms and probabilistic data. Our position rejects a false dichotomy between "mechanistic" and "probabilistic" analyses of causal inference -- a dichotomy that both overlooks the nature of the evidence that supports the induction of mechanisms and misses some important probabilistic implications of mechanisms. This dichotomy has obscured an alternative conception of causal learning: for discrete events, a central adaptive task is to induce causal mechanisms in the environment from probabilistic data and prior knowledge. Viewed from this perspective, it is apparent that the probabilistic norms assumed in the human causal judgment literature often do not map onto the mechanisms generating the probabilities. Our alternative conception of causal judgment is more congruent with both scientific uses of the notion of causation and observed causal judgments of untutored reasoners. We illustrate some of the relevant variables under this conception, using a framework for causal representation now widely adopted in computer science and, increasingly, in statistics. We also review the formulation and evidence for a theory of human causal induction (Cheng, 1997) that adopts this alternative conception.

History

Publisher Statement

All Rights Reserved

Date

1998-01-01

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC