Carnegie Mellon University
Browse
- No file added yet -

Co-Retrieval: A Boosted Reranking Approach for Video Retrieval

Download (784.54 kB)
journal contribution
posted on 1979-01-01, 00:00 authored by Rong Yan, Alexander Hauptmann
Video retrieval compares multimedia queries to items in a video collection in multiple dimensions and combines all the similarity scores into a final retrieval ranking. Although text is the most reliable feature for video retrieval, features from other modalities can provide complementary information. A reranking framework for video retrieval to augment text feature based retrieval with other evidence is presented. A boosted reranking algorithm called co-retrieval is then introduced, which combines a boosting type learning algorithm and a noisy label prediction scheme to select automatically the most useful (weak) features from multiple modalities. The proposed approach is evaluated with queries and video from the 65 h test collection of the 2003 NIST TRECVID evaluation and it achieves considerable improvement over several baseline retrieval algorithms.

History

Publisher Statement

All Rights Reserved

Date

1979-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC