Carnegie Mellon University
file.pdf (275.45 kB)
Download file

Combining Simple Discriminators for Object Discrimination

Download (275.45 kB)
journal contribution
posted on 2002-01-01, 00:00 authored by Shyjan Mahamud, Martial Hebert, John Lafferty
We propose to combine simple discriminators for object discrimination under the maximum entropy framework or equivalently under the maximum likelihood framework for the exponential family. The duality between the maximum entropy framework and maximum likelihood framework allows us to relate two selection criteria for the discriminators that were proposed in the literature. We illustrate our approach by combining nearest prototype discriminators that are simple to implement and widely applicable as they can be constructed in any feature space with a distance function. For efficient run-time performance we adapt the work on “alternating trees” for multi-class discrimination tasks. We report results on a multi-class discrimination task in which significant gains in performance are seen by combining discriminators under our framework from a variety of easy to construct feature spaces.


Publisher Statement

The original publication is available at



Usage metrics