Carnegie Mellon University
Browse

Common Voting Rules as Maximum Likelihood Estimators

Download (272.98 kB)
journal contribution
posted on 2009-06-01, 00:00 authored by Vincent Conitzer, Tuomas W Sandholm

Voting is a very general method of preference aggregation. A voting rule takes as input every voter's vote (typically, a ranking of the alternatives), and produces as output either just the winning alternative or a ranking of the alternatives. One potential view of voting is the following. There exists a \correct" outcome (winner/ranking), and each voter's vote corresponds to a noisy perception of this correct outcome. If we are given the noise model, then for any vector of votes, we can compute the maximum likelihood estimate of
the correct outcome. This maximum likelihood estimate constitutes a voting rule. In this paper, we ask the following question: For which common voting rules does there exist a noise model such that the rule is the maximum likelihood estimate for that noise model? We require that the votes are drawn
independently given the correct outcome (we show that without this restriction, all voting rules have the property). We study the question both for the case where outcomes are winners and for the case where outcomes
are rankings. In either case, only some of the common voting rules have the property. Moreover, the sets of rules that satisfy the property are incomparable between the two cases (satisfying the property in the one case
does not imply satisfying it in the other case).

History

Date

2009-06-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC