Carnegie Mellon University
Browse
- No file added yet -

Comparison of k-Class Estimators When the Disturbances Are Small

Download (298.81 kB)
journal contribution
posted on 1975-12-12, 00:00 authored by Joseph B. Kadane
A new approach to the choice ofeconometric estimators, called small-sigma asymptotics, is introduced and applied to the choice of k-class estimators of the parameters of a single equation in a system of linear simultaneous stochastic equations. I find that when the degree of over-identification is no more than six, the two stage least squares estimator uniformly dominates the limited information maximum likelihood estimator in a certain sense. The small sigma method can be used on many problems in statistics and econometrics.

History

Publisher Statement

All Rights Reserved

Date

1975-12-12

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC