Carnegie Mellon University
Browse
- No file added yet -

Computing Differential Invariants of Hybrid Systems as Fixedpoints

Download (1.5 MB)
journal contribution
posted on 1999-09-01, 00:00 authored by Andre Platzer, Edmund M Clarke
We introduce a fixedpoint algorithm for verifying safety properties of hybrid systems with differential equations that have right-hand sides that are polynomials in the state variables. In order to verify non-trivial systems without solving their differential equations and without numerical errors, we use a continuous generalization of induction, for which our algorithm computes the required differential invariants. As a means for combining local differential invariants into global system invariants in a sound way, our fixedpoint algorithm works with a compositional verification logic for hybrid systems. To improve the verification power, we further introduce a saturation procedure that refines the system dynamics successively with differential invariants until safety becomes provable. By complementing our symbolic verification algorithm with a robust version of numerical falsification, we obtain a fast and sound verification procedure. We verify roundabout maneuvers in air traffic management and collision avoidance in train control.

History

Date

1999-09-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC