Carnegie Mellon University
Browse

Context Identification for Efficient Multiple-Model State Estimation

Download (273.43 kB)
journal contribution
posted on 2007-01-01, 00:00 authored by Sarjoun Skaff, Alfred A. Rizzi, Howie Choset
This paper presents an approach to accurate and scalable multiple-model state estimation for hybrid systems with intermittent, multi-modal dynamics. The approach consists of using discrete-state estimation to identify a system’s behavioral context and determine which motion models appropriately represent current dynamics, and which multiple-model filters are appropriate for state estimation. This improves the accuracy and scalability of conventional multiple-model state estimation. This approach is validated experimentally on a mobile robot that exhibits multi-modal dynamics.

History

Publisher Statement

"©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Date

2007-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC