file.pdf (581.59 kB)
Download file

Context and Observation Driven Latent Variable Model for Human Pose Estimation

Download (581.59 kB)
journal contribution
posted on 01.06.2008, 00:00 authored by Abhinav GuptaAbhinav Gupta, Trista Chen, Francine Chen, Don Kimber, Larry S. Davis

Current approaches to pose estimation and tracking can be classified into two categories: generative and discriminative. While generative approaches can accurately determine human pose from image observations, they are computationally expensive due to search in the high dimensional human pose space. On the other hand, discriminative approaches do not generalize well, but are computationally efficient. We present a hybrid model that combines the strengths of the two in an integrated learning and inference framework. We extend the Gaussian process latent variable model (GPLVM) to include an embedding from observation space (the space of image features) to the latent space. GPLVM is a generative model, but the inclusion of this mapping provides a discriminative component, making the model observation driven. Observation Driven GPLVM (OD-GPLVM) not only provides a faster inference approach, but also more accurate estimates (compared to GPLVM) in cases where dynamics are not sufficient for the initialization of search in the latent space. We also extend OD-GPLVM to learn and estimate poses from parameterized actions/gestures. Parameterized gestures are actions which exhibit large systematic variation in joint angle space for different instances due to difference in contextual variables. For example, the joint angles in a forehand tennis shot are function of the height of the ball (Figure 2). We learn these systematic variations as a function of the contextual variables. We then present an approach to use information from scene/objects to provide context for human pose estimation for such parameterized actions.

History

Date

01/06/2008

Usage metrics

Keywords

Exports