Carnegie Mellon University
Browse

Core-Shell Magnetic Morphology of Structurally Uniform Magnetite Nanoparticles

Download (1.35 MB)
journal contribution
posted on 2010-05-01, 00:00 authored by K. L. Kryka, Ryan A. Booth, Charles R. Hogg, Y. Ijiri, J. A. Borchers, W. C. Chen, S. M. Watson, M. Laver, T. R. Gentile, L. R. Dedon, S. Harris, J. J. Rhyne, Sara A. Majetich

A new development in small-angle neutron scattering with polarization analysis allows us to directly extract the average spatial distributions of magnetic moments and their correlations with three-dimensional directional sensitivity in any magnetic field. Applied to a collection of spherical magnetite nanoparticles 9.0 nm in diameter, this enhanced method reveals uniformly canted, magnetically active shells in a nominally saturating field of 1.2 T. The shell thickness depends on temperature, and it disappears altogether when the external field is removed, confirming that these canted nanoparticle shells are magnetic, rather than structural, in origin.

History

Date

2010-05-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC